
SOIL, 10, 795–812, 2024
https://doi.org/10.5194/soil-10-795-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

SOIL

Investigating the complementarity of thermal and
physical soil organic carbon fractions

Amicie A. Delahaie1, Lauric Cécillon1, Marija Stojanova1, Samuel Abiven1, Pierre Arbelet2,
Dominique Arrouays3, François Baudin4, Antonio Bispo3, Line Boulonne3, Claire Chenu5,
Jussi Heinonsalo6, Claudy Jolivet3, Kristiina Karhu6, Manuel Martin3, Lorenza Pacini1,2,

Christopher Poeplau7, Céline Ratié3, Pierre Roudier8, Nicolas P. A. Saby3, Florence Savignac4, and
Pierre Barré1

1Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL, Paris, France
2Greenback (commercial name: Genesis), Paris, France

3INRAE, Info&Sols, 45075, Orléans, France
4UMR ISTeP 7193, Sorbonne Université, CNRS, Paris, France

5UMR ECOSYS, INRAE, AgroParisTech, Université Paris Saclay, 91123 Palaiseau, France
6Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

7Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
8Manaaki Whenua – Landcare Research, Te Papaioea / Palmerston North, Aotearoa / New Zealand

Correspondence: Amicie A. Delahaie (amicie.delahaie@ens.fr)

Received: 22 January 2024 – Discussion started: 2 February 2024
Revised: 8 June 2024 – Accepted: 1 July 2024 – Published: 12 November 2024

Abstract. Partitioning soil organic carbon (SOC) in fractions with different biogeochemical stability is use-
ful to better understand and predict SOC dynamics and provide information related to soil health. Multiple SOC
partition schemes exist, but few of them can be implemented on large sample sets and therefore be considered rel-
evant options for soil monitoring. The well-established particulate organic carbon (POC) vs. mineral-associated
organic carbon (MAOC) physical fractionation scheme is one of them. Introduced more recently, Rock-Eval®

thermal analysis coupled with the PARTYSOC machine learning model can also fractionate SOC into active
(Ca) and stable SOC (Cs). A debate is emerging as to which of these methods should be recommended for soil
monitoring. To investigate the complementarity or redundancy of these two fractionation schemes, we compared
the quantity and environmental drivers of SOC fractions obtained on an unprecedented dataset from mainland
France. About 2000 topsoil samples were recovered all over the country, presenting contrasting land cover and
pedoclimatic characteristics, and analysed. We found that the environmental drivers of the fractions were clearly
different, the more stable MAOC and Cs fractions being mainly driven by soil characteristics, whereas land cover
and climate had a greater influence on more labile POC and Ca fractions. The stable and labile SOC fractions pro-
vided by the two methods strongly differed in quantity (MAOC/Cs = 1.88± 0.46 and POC/Ca = 0.36± 0.17;
n= 843) and drivers, suggesting that they correspond to fractions with different biogeochemical stability. We
argue that, at this stage, both methods can be seen as complementary and potentially relevant for soil monitoring.
As future developments, we recommend comparing how they relate to indicators of soil health such as nutrient
availability or soil structural stability and how their measurements can improve the accuracy of SOC dynamics
models.
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1 Introduction

Evaluating the biogeochemical stability of soil organic car-
bon (SOC) is crucial for predicting future SOC stock changes
and assessing soil health. SOC biogeochemical stability de-
pends on many interacting factors such as soil organic matter
(SOM) molecular composition and interactions with the min-
eral matrix (von Lützow et al., 2006; Schmidt et al., 2011).
For a given soil, SOC represents a continuum of mean resi-
dence times (MRTs) ranging from days to millennia (Bales-
dent, 1996). However, this continuum cannot be measured
directly and then used efficiently for evaluating SOC biogeo-
chemical stability. For this reason, many studies have pro-
posed SOC fractionation schemes to distinguish fractions
with contrasting residence times, enabling a practical as-
sessment of SOC biogeochemical stability (Poeplau et al.,
2018). Nevertheless, many of these fractionation methods are
expensive and time-consuming, making their use on large
datasets almost impossible.

Recently, Lavallee et al. (2020) proposed a drastic sim-
plification of the SOC biogeochemical stability continuum
by dividing SOC into two fractions of contrasted stability:
particulate organic carbon (POC) and mineral-associated or-
ganic carbon (MAOC) fractions, following on early work by
Cambardella and Elliott (1992). This physical fractionation
scheme is relatively quick and can be implemented on hun-
dreds of samples (Lugato et al., 2021), and recent studies
have underlined the potential interest of such a dualistic view
of the SOC persistence continuum (Cécillon, 2021; Angst et
al., 2023; Lugato et al., 2021).

Less popular than physical fractionation, thermal fraction-
ation has also been proposed as an efficient method to eval-
uate SOC quality (Plante et al., 2009). In particular, Rock-
Eval® thermal analysis has been the subject of growing in-
terest in recent years in assessing SOC biogeochemical sta-
bility (Saenger et al., 2013; Barré et al., 2016; Sebag et al.,
2016; Soucémarianadin et al., 2018). This method is rel-
atively fast and can be used to analyse a series of thou-
sands of samples (Delahaie et al., 2023). Moreover, Cécil-
lon et al. (2018, 2021) developed a machine learning model,
PARTYSOC, which uses Rock-Eval® thermal analyses results
as input variables to estimate the proportion of SOC that is
stable at a centennial scale and, by difference, the proportion
of SOC that is active at this timescale. Kanari et al. (2022)
showed that the fractions determined by PARTYSOC match
the “stable” and “active” fractions of the AMG model (Clivot
et al., 2019), improving its simulations of SOC stock evolu-
tions in croplands. As a result, Rock-Eval® thermal analy-
sis associated with PARTYSOC allows SOC to be partitioned
into a more labile fraction (Ca), with an MRT ranging from
20 to 40 years, and a stable fraction (Cs), which can be con-
sidered inert at a centennial timescale.

The POC/MAOC physical fractionation and the Ca/Cs
thermal fractionation are therefore two methods that can po-
tentially be used to split SOC into fractions with contrasted

biogeochemical stability and be implemented on large sam-
ple sets. With the growing interest in monitoring programmes
of soil health and the need for better initialization methods
able to improve the accuracy of SOC dynamics models, it is
necessary to assess the extent to which these two fractiona-
tion approaches are complementary or redundant.

Our hypotheses were that as they do not target the same
SOC pools (Balesdent, 1996; Poeplau et al., 2018; Kanari
et al., 2022), POC and Ca as well as MAOC and Cs fractions
may represent different quantities and have different environ-
mental drivers (soil characteristics, land cover, and climate
variables) and can therefore be considered complementary.
To test our hypotheses, we used an unprecedented dataset
comprising ca. 2000 Rock-Eval® thermal analyses and ca.
1000 POC/MAOC physical fractionation data from the anal-
ysis of topsoil (0–30 cm) samples that are part of the French
soil monitoring network (RMQS).

2 Material and methods

2.1 RMQS soil samples

The soil samples used in this article are part of the French
“Réseau de mesures de la qualité des sols” (RMQS) network
and were previously described in Gogé et al. (2012) and De-
lahaie et al. (2023). A complete description of this monitor-
ing network is available in Jolivet et al. (2006, 2022). Briefly,
French mainland soils are monitored every 15 years follow-
ing a 16km× 16km regular square grid, resulting in 2170
sites. When possible, the sampling site is set at the centre
of the cell; alternatively, another site is selected if needed
within a 1 km radius from the centre of the cell. At each sam-
pling site, 25 topsoil samples (0 to 30 cm or tilled layer depth,
whichever depth is smaller) are taken from a 20m×20m area
using a spiral auger and then mixed, resulting in a composite
sample of 5 to 10 kg.

The composite samples are then placed in trays and air-
dried at 30 °C for 8 to 10 d and quartered according to NF
ISO 11464, resulting in a subsample of ca. 650 g. They are
then hand-crushed and sieved at 2 mm, and an aliquot is
ground under 250 µm by a Cyclotec 1093 (FOSS) (Gogé et
al., 2012). The remains of the samples are stored in plastic
buckets.

A total of 2037 samples from the first sampling campaign
(2000–2009) out of 2170 were recovered and analysed by
Rock-Eval® thermal analysis in Delahaie et al. (2023).

2.2 Soil and environmental data associated with each
RMQS site and topsoil sample

2.2.1 Soil data

Physical and chemical analyses were carried out on compos-
ite soil samples at the Laboratoire d’Analyse des Sols (IN-
RAE, Arras, France). The inorganic carbon content (Cinorg)
was derived from the total carbonate content, in grams per
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kilogram of sample (volumetric method, NF EN ISO 10693),
and calculated as Cinorg = total carbonate× 0.12; the total
carbon content, in grams per kilogram of sample, was deter-
mined by elemental analysis using dry combustion on non-
decarbonated soil; the organic carbon content was derived
from the elemental analysis (TOCea), in grams per kilogram
of sample, and calculated as total carbon content minus inor-
ganic carbon content, i.e. TOCea−Cinorg (NF ISO 10694;
“NF” standing for French standard); the total nitrogen, in
grams per kilogram of sample, was determined by dry com-
bustion (NF ISO 13878); the particle size distribution was
measured without decarbonation, in grams per kilogram of
sample (Robinson pipette and underwater sieving, method
validated in relation to standard NF X31-107); pH was mea-
sured in a suspension of soil diluted with water (dilution 1 : 5,
NF ISO 10390); the exchangeable calcium content, in cen-
timoles per kilogram of sample, was measured by cobalti-
hexammine chloride extraction (NF X31-130); the exchange-
able magnesium content, in centimoles per kilogram of sam-
ple, was measured by cobaltihexammine chloride extraction
(NF X31-130); the exchangeable potassium content, in centi-
moles per kilogram of sample, was measured by cobaltihex-
ammine chloride extraction (NF X31-130); and the free iron
oxides, in grams per 100 g, were measured with the Tamm
method in the dark (amorphous oxides) and the Mehra–
Jackson method (crystalline oxides) (INRA standard/NF ISO
22036).

2.2.2 Climate data

We allocated the climatic data corresponding to the
SAFRAN 8km× 8km grid cell to each sampling site
based on where the cell was located (https://publitheque.
meteo.fr/okapi/accueil/okapiWebPubli/index.jsp, last access:
31 March 2022). The daily data were averaged over the
1969–1999 period (i.e. the 30-year common period before
the first sampling campaign started in 2000) in order to com-
pute the mean annual temperature (MAT) and mean annual
precipitation (MAP) for each site.

2.2.3 Land cover data

Land cover data were recorded during sampling. Four main
categories of land cover were considered for this study:
“croplands”, “forests”, “grasslands”, and “vineyards and or-
chards”. A few samples were collected in “wastelands”, “ur-
ban parks”, and “sites with little human disturbance”. Con-
sidering the very small number of samples, “wastelands” (ca.
10) and “gardens” (n= 3) were not included in this study.
The number of samples from environments with little hu-
man disturbance (ca. 30) could potentially be considered suf-
ficient for statistical treatment; however, these samples repre-
sent a very heterogeneous set (10 miscellaneous subclasses,
such as peatlands, alpine grasslands, water edge vegetation,

heath, and dry siliceous meadows). Thus, those sites were
also discarded.

2.3 Thermal SOC fractionation

2.3.1 Rock-Eval® thermal analyses

In total, 2037 samples were analysed by Rock-Eval® ther-
mal analysis (Disnar et al., 2003; Baudin et al., 2015). For
each sample, ca. 60 mg of finely ground matter (< 250 µm)
was placed in a special high-temperature-resistant stainless-
steel pod, allowing the transport gas to pass through, and
then placed inside a Rock-Eval® 6 (RE6) Turbo device (Vinci
Technologies). There, it underwent a first phase of pyrolysis
under an inert atmosphere (N2) from ambient temperature
to 650 °C (3 min isotherm at 200 °C and then a temperature
ramp of 30 °Cmin−1) and a second phase of oxidation un-
der the laboratory atmosphere purged from water and CO2,
from 300 to 850 °C (1 min isotherm at 300 °C and then a tem-
perature ramp of 20 °Cmin−1). During the pyrolysis phase,
hydrocarbon effluents were monitored by a flame ionization
detector, and CO and CO2 were monitored by infrared detec-
tors. During the oxidation phase, CO and CO2 were moni-
tored by infrared detectors. The resulting thermograms were
processed using the Geoworks software (Geoworks V1.6R2,
Vinci Technologies, 2021).

The organic carbon yield was defined as the ratio of the to-
tal organic carbon amount measured by Rock-Eval® thermal
analysis (TOCre6, calculated from thermogram area integra-
tion) over the total organic carbon amount measured by ele-
mental analysis (TOCea). We chose to apply a quality crite-
rion on this yield: further study was only conducted on sam-
ples with an organic carbon yield ranging from 0.7 to 1.3.
This range was set to identify the acceptable yields ensuring
the quality of the Rock-Eval® analysis as well as the iden-
tity of the sample. Of the 2037 samples analysed by Rock-
Eval® thermal analysis, 1891 presented an organic carbon
yield ranging from 0.7 to 1.3 (Delahaie et al., 2023). We also
removed 12 samples with TOCea > 120gkg−1 to avoid or-
ganic soils (Eggleston et al., 2006), resulting in a dataset of
1879 samples.

2.3.2 The PARTYSOC fractionation

The PARTYSOC model (Cécillon et al., 2018, 2021) is a ma-
chine learning model using the results of the Rock-Eval®

thermal analysis of mineral topsoils as entry variables. This
model, trained on data from long-term agronomic experi-
ments, uses 18 Rock-Eval® parameters – associated with
either thermal stability or chemical composition – as in-
put variables and determines the proportion of the centen-
nially persistent organic carbon pool in a mineral topsoil
sample. By taking into account both the chemical recalci-
trance and the stabilization brought by the organic matter–
mineral interactions, this model recognizes different aspects
of the biogeochemical stability, not limited to the chemistry
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alone. The stable SOC proportion is now calculated routinely
by the Geoworks software (Geoworks V1.6R2, Vinci Tech-
nologies, 2021) using the model PARTYSOC v2.0EU pub-
lished in Cécillon et al. (2021). For each site, we multi-
ply the proportion of stable C by the TOCea to calculate
the conceptual Cs pool (gCkg−1 sample); the conceptual ac-
tive pool Ca (gCkg−1 sample) is obtained by difference, i.e.
Ca = TOCea−Cs.

2.4 Physical SOC fractionation

The physical SOC fractionation, i.e. particle size fractiona-
tion, was conducted by the SADEF laboratory (Aspach-Le-
Bas, France) on a subset of the RMQS (997 sites) following
a protocol based on the norm NF X 31-516, itself based on
Balesdent et al. (1991, 1998). The dispersion was carried out
with a solution of sodium hexametaphosphate at a concen-
tration of 5 gL−1. A quantity of 50 g of soil sieved at 2 mm
was stirred into 180 mL of hexametaphosphate solution with
10 glass beads of 5 mm diameter and underwent rotary ag-
itation for 16 h at 20 °C at 45 rpm in a 250 mL flask. The
fractions were then sieved by hand at 0.2 mm with rotative
movements, and sprays of demineralized water were used to
complete the sieving process. The matter remaining on the
sieve was transferred in a capsule, dried, and crushed. The
suspension containing the fine particles (< 0.2 mm) and rins-
ing water was collected for further sieving to 0.05 mm. The
same principle was then applied for the sieving at 0.05 mm,
but it was conducted on three or four successive fractions of
the suspension to avoid clogging the sieve. The liquid frac-
tion containing the particles below 0.05 mm was recovered in
a 1 L crystallizer and dried. The drying of the fractions was
carried out in a ventilated oven at 105 °C.

This fractionation process thus resulted in three fractions:
the mineral-associated organic matter (MAOM) fraction cor-
responds to the 0–50 µm fraction, the fine particulate organic
matter fraction corresponds to the 50–200 µm fraction, and
the coarse particulate organic matter fraction corresponds
to the 200–2000 µm fraction. The carbon contained in the
MAOM fraction constitutes the MAOC, while the carbon
contained in both the fine particulate organic matter (POM)
and coarse POM constitutes the POC.

After drying, all the dry matter in each fraction was re-
covered. Each fraction was introduced into a corundum bowl
and ground with corundum balls (Retch PM400 planetary
ball mill) at 400 rpm for 5 min to ensure the final matter is
ground at < 250 µm and homogenized.

Carbon and nitrogen measurements were carried out on a
Flash 2000 elemental analyser for soils without carbonates
(determined by acid test) following the norms NF ISO 10694
and NF ISO 13878, respectively. For carbonated soils, only
nitrogen was measured on the Flash 2000 elemental anal-
yser (Dumas method NF ISO 13878). Organic carbon was
analysed by chemical oxidation (NF ISO 14235). The total
organic carbon retrieved after physical fractionation is de-

noted TOCfr, and the organic carbon yield for this fractiona-
tion was defined as the ratio of TOCfr over TOCea.

The C yield was on average 93.4 % for the 997 samples.
For the same reasons as above, we also introduced a quality
criterion on this yield, identical to the one for the Rock-Eval®

results (0.7 to 1.3). Following this rule, 33 samples were re-
moved from the dataset. Then, four samples with TOCea >

120gkg−1 were also removed to avoid organic soils (Eggle-
ston et al., 2006), resulting in a final dataset comprising 960
fractionation results. The samples removed showed no par-
ticular pedoclimatic characteristics (Fig. A2).

As the physical and thermal fractionations were not con-
ducted on all the samples, there are samples for which data of
only one method were available. The intersection of the phys-
ical fractionation dataset and thermal fractionation dataset
consists of 843 samples and is thereafter designated as the
“intersection dataset”.

2.5 Statistical analysis

2.5.1 The determination of drivers of the POC, MAOC,
Ca, Cs, and TOCea quantities

In this study, we tested the influence of different environmen-
tal variables on the Cs, Ca, MAOC, and POC content using
random forest (RF) regression models based on the method
used by Georgiou et al. (2022). One advantage of random
forest models is that they can cope with non-normally dis-
tributed and correlated variables (Breiman, 2001). The con-
sidered environmental drivers were related to soil character-
istics (particle size distribution, pH, inorganic carbon con-
tent, exchangeable cations contents (calcium, magnesium,
potassium), amorphous and crystalline iron oxyhydroxides
contents), climate (mean annual precipitation, mean annual
temperature), and land cover. The relative importance of each
of these features as estimated by the random forest model al-
lowed us to evaluate the main drivers of the quantity of each
fraction.

The modelling pipeline was divided into two steps. The
first preprocessing step used one-hot encoding (creating one
Boolean column per class for any categorical variable; one-
hot encoding was chosen in order to handle categorical vari-
ables without establishing any artificial ranking between
them), while all the numeric variables were standardized by
removing their mean and dividing them by their variances.
In the second step, a bootstrapped random forest regressor
was used to calibrate the actual model. Grid search and cross-
validation were used to choose the model’s hyper-parameters
(Table A1), using cross-validated R2 (determination coeffi-
cient) as a performance metric. These hyper-parameters de-
fine the structure and construction of the forest’s trees, and
as such they are crucial and must be chosen wisely to ensure
that the model does not overfit or underfit the training data.

After the model was calibrated, the importance of the en-
vironmental predictors was calculated using two different
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methods: the mean decrease in impurity (MDI) and the per-
mutation importance (PI) score (Louppe, 2014). Both meth-
ods gave a measurement of the importance of the environ-
mental variables selected in the model. The MDI aims at se-
lecting the predictors that, on average, produce trees with
the purest nodes and leaves. In this case, purity refers to
the similarity of the samples contained in a single leaf. The
MDI is calculated using the training set, and it is the default
decision metric used in constructing scikit-learn’s random
forests. However, the MDI has a known tendency to lower
the importance of the low-cardinality variables and possibly
has a bias towards highly correlated variables (Louppe et al.,
2013). The PI score measures the impact of each individ-
ual predictor by randomly permuting it and then calculating
the increase in prediction error as opposed to using the non-
permuted predictor. By construction, PI can be calculated on
both the training and the test set. Its main advantage over the
MDI is that it shows no bias towards high-cardinality predic-
tors. Highly correlated variables can be detected using PI as
their permutation will have little to no impact on the model’s
prediction accuracy.

In order to analyse the variable importance results, the en-
vironmental variables were grouped into three broad cate-
gories: “land cover”, “pedology” (particle size distribution,
pH, inorganic carbon content, exchangeable calcium content,
exchangeable magnesium content, exchangeable potassium
content, amorphous, and crystalline iron oxyhydroxides con-
tents), and “climate” (mean annual temperature and mean an-
nual precipitation). These groupings were used to guide vi-
sual analysis of the variable importance plots generated for
the Cs, Ca, MAOC, and POC models.

The random forest modelling (and associated metrics) was
done in Python as implemented in the scikit-learn v1.3.0 li-
brary (Pedregosa et al., 2011), while the least-squares lin-
ear regression used the SciPy v1.10.1 library (Virtanen et al.,
2020).

2.5.2 Assessments of the effect of land cover on
fractions

To assess the effect of land cover on the different frac-
tions, we performed pairwise comparisons of medians using
non-parametric Kruskal–Wallis tests (p < 0.05) followed by
Wilcoxon tests, with p < 0.05 for each pair. The correction
of p values within the framework of the multiple compar-
isons was done using the Holm–Bonferroni method. Corre-
lations between parameters were calculated using the Spear-
man method.

The data processing and statistical analysis were car-
ried out using R software (V4.1.2; R Core Team, 2021):
the corrplot (Wei and Simko, 2021), car (Fox and Weis-
berg, 2019), ggplot2 (Wickham, 2016), ggpubr (Kassambara,
2023a), factoextra (Kassambara and Mundt, 2020), plot3D
(Soetaert, 2021), and rstatix (Kassambara, 2023b) packages
were added.

3 Results

3.1 POC vs. Ca and MAOC vs. Cs: fractions and
conceptual pools in different quantities

Figure 1 shows the quantities of Cs plotted against MAOC
and the quantities of Ca plotted against POC, comparing the
more stable and more labile fractions two by two for each
fractionation scheme for the intersection dataset (samples
having been subjected to both thermal and physical fractiona-
tion schemes). Regarding the more stable fractions (Fig. 1a),
the MAOC content was much higher than the Cs content (on
average 19.13 gkg−1 of sample vs. 10.06 gkg−1 of sample
for the 843 samples of the intersection dataset). The average
ratio of MAOC/Cs for the samples of the intersection dataset
was 1.88± 0.46. For the more labile fractions (Fig. 1b), the
POC content was much lower than the Ca content (on aver-
age 5.32 gkg−1 of sample vs. 14.40 gkg−1 of sample for the
843 samples of the intersection dataset). The average ratio
of POC/Ca for the samples of the intersection dataset was
0.36± 0.17. These results are very close to those obtained
when excluding the samples with TOCea values outside the
PARTYSOC model learning range (5–41.5 gkg−1 of sample;
see Fig. A1). The correlations between Cs and MAOC on the
one side (0.90) and between Ca and POC on the other side
(0.87) are both very significant. In comparison, the correla-
tion coefficients between Cs, MAOC, and Ca and POC on the
one hand and TOC on the other hand are 0.91, 0.96, 0.98, and
0.86, respectively.

3.2 Differences in SOC fractions’ proportions under
different land cover

Figure 2 shows Ca and POC as a proportion of TOC for the
four considered land cover types. As Ca+Cs and POC+
MAOC were equal to TOC, the analysis on Cs or MAOC
proportions would have given the same information. Figure 2
shows that the proportion of Ca of the TOC followed the
order vineyards and orchards < croplands < grasslands <

forests (and similarly for POC). The mean values of the pro-
portion of Ca were 0.48, 0.60, 0.63, and 0.35 in croplands,
grasslands, forests, and vineyards, respectively. It also shows
that POC as a proportion of TOC was significantly smaller
in croplands compared to forests, grasslands, and vineyards
and orchards, but the median value of POC in croplands was
close to the median value in grasslands (0.13 in croplands,
0.17 in grasslands, 0.27 in forests, and 0.19 in vineyards
and orchards). As with the median values, the mean values
showed a similar difference between croplands (0.15± 0.05)
and grasslands (0.19± 0.07), with forests displaying a higher
value (0.28± 0.09). While the Ca fraction generally repre-
sents a high proportion of TOC (up to 0.75 in forests; pro-
portion of Ca > 0.5 in 1277 out of 1879 samples), POC most
often represented only a minority of TOC (proportion of
POC > 0.5 in 17 out of 960 samples).
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Figure 1. Comparison of the quantities of the more stable and more labile fractions for the physical and thermal SOC fractionation schemes,
with their correlation coefficient R2 and linear regression. Panel (a) shows the quantities of MAOC plotted against Cs. Panel (b) shows the
quantities of POC plotted against Ca. The dataset is the intersection dataset, i.e. samples for which thermal and physical data are available
(n= 843).

Figure 2. Proportion of the Ca and POC fractions depending on the land cover. The black line in each box is the median, the lower and
upper edges of the black rectangle are the respective first (Q1) and third (Q3) quartiles, and the lower and upper whiskers are the maximum
between the minimum value or the first quartile minus 1.5 times the interquartile range (max[min;Q1−1.5× (Q3−Q1)]) and the minimum
between the maximum or the third quartile plus 1.5 times the interquartile range (min[max;Q3+ 1.5× (Q3−Q1)]), respectively. Different
letters indicate significant differences in the distribution of the values for the land cover according to a Kruskal–Wallis test (p < 0.05) and a
pairwise Wilcoxon rank sum test (p < 0.05); lowercase letters are used for Ca and uppercase for POC.

Additionally, different ratios (MAOC/Cs and POC/Ca)
are given in Fig. A3. Croplands and grasslands exhibited a
similar and small POC/Ca ratio, while forests and vineyards
and orchards show a higher POC/Ca ratio. Conversely, the
MAOC/Cs ratio is very small in the vineyards and orchards
and the highest in grasslands, with a significant difference
between croplands and grasslands.

3.3 Drivers of the different SOC fraction quantities

The random forest models fitted for the four different SOC
fractions and conceptual pools aimed at elucidating the rela-
tive importance of the soil and environmental variables. Their
explanatory capacity was evaluated based on the R2 values
obtained for each fraction. The random forest models’ R2

scores on the test set were 61 % for Cs, 53 % for MAOC,
57 % for Ca, 36 % for POC, and 58 % for TOCea (Fig. A3).
The R2 values obtained through cross-validation of the train-
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ing set were higher but close (Table A1), except for the POC
which has a strongly higher training set score. Overall, the
models’ performance was satisfactory and allowed their vari-
able importance to be analysed.

Figure 3 shows the importance of the different categories
of environmental variables on the quantities of POC, Ca,
MAOC, and Cs, evaluated using two different methods. The
results with both the MDI and PI showed a higher impor-
tance of the pedological features and a smaller importance
of climate and land cover in the more stable fractions (Cs
and MAOC). Conversely, the more labile fractions (Ca and
POC) showed a higher importance of land cover and, to a
lesser extent, climate, compared to Cs and MAOC. Ca tended
to show a slightly stronger influence of climate and weaker
influence of land cover, while POC rather showed the oppo-
site. Among the more stable fractions, climate and land cover
tended to have a slightly higher importance for MAOC than
for Cs. The results for the TOCea showed a mixture of drivers
in between stable and labile fractions.

The results for the Spearman correlation coefficients be-
tween all environmental variables and fractions’ quanti-
ties are given in Table A2 in the Appendix. Soil variables
favouring organic matter–mineral interactions (clay, metal-
lic oxides, cation-exchange capacity (CEC), exchangeable
calcium) were positively correlated with fractions. Over-
all, these correlations were stronger for the Cs and MAOC
fractions. On average, iron oxyhydroxides and exchangeable
cations are the most important factors influencing the size
of the fractions (Fig. 3). Carbonates and pH little influenced
the size of the fractions and texture had a minor role but for
Cs. Regarding climate variables, MAT had a higher influence
than MAP except for Cs fractions.

4 Discussion

4.1 A strong influence of land cover on the more labile
SOC fractions

This study, based on an unprecedented number of measure-
ments (n= 960 for POC/MAOC and n= 1879 for Ca/Cs),
shows the high influence of land cover on the relative quan-
tity of SOC labile and stable fractions and conceptual pools
(Fig. 2).

The higher proportion of POC in forest than in grassland
and cropland soils (0.13, 0.17, and 0.27 in croplands, grass-
lands, and forests, respectively) was also observed in Lugato
et al. (2021), who used results from 352 physical fractiona-
tions obtained using a fractionation protocol similar to ours
on samples from the LUCAS soil monitoring network. It was
also observed by Hansen et al. (2024) in a global dataset
combining physical fractions obtained with different proto-
cols. Other studies showed similar results for POC, but com-
parisons are less straightforward as the physical fractionation
protocols used are significantly different from those used in
our study. For instance, some studies used the protocol of

Zimmermann et al. (2007), where the sorting size for POC is
> 63 µm (compared with > 50 µm in our protocol) and part
of POC is also recovered after the disruption of sand-sized
aggregates. When combining free POC and occluded POC
(which corresponds to what is called POC in our study), Poe-
plau and Don (2013) found proportions of POC of 0.15 in
croplands, 0.21 in grasslands, and 0.27 in forests in a variety
of sites across Europe, which is very close to the values ob-
served here for French soils. The value of 0.13 for the propor-
tion of POC in croplands is also close to the 0.15 value used
in Angers et al. (2011) to estimate the proportion of POC
from TOC. Chen et al. (2019) gathered data from multiple
previous studies to derive POC proportion values of 0.15 for
croplands, 0.31 for grasslands, and 0.34 for forests.

Regarding the Ca conceptual pool, we found a higher pro-
portion of Ca in forest than in grassland and cropland soils
(0.48, 0.62, and 0.65 in croplands, grasslands, and forests,
respectively). This was also observed in previous works, but
the body of literature available for discussion is much more
limited than for physical fractionation. We can note that the
median value of Ca for croplands is close to the mean value
(0.48 vs 0.42) obtained by Kanari et al. (2022) on nine long-
term field experiments in mainland France. Moreover, the
proportion of Ca is set to 0.60 in the AMG model for grass-
lands (Clivot et al., 2019) in its default parameterization,
which is also in line with the Ca proportions observed for
grassland sites of the RMQS (0.62 on average). The differ-
ence is bigger regarding croplands as the default parameter-
ization for Ca is set to 0.35, while the value found for the
RMQS is 0.48. This may be explained by the fact that the
AMG model was developed on long-term experimental sites
that have been cropped for several decades, whereas French
agricultural soils have probably on average undergone more
changes in vegetation cover. The higher Ca value in RMQS
cropland soils could thus be due to a difference in land cover
history in French cropland soils compared to cropland sites
of long-term experiments. Indeed, the land cover history is
likely to be reflected in the results: the croplands with lower
Cs proportions could likely be former grasslands or forests
recently converted to agriculture. On the other hand, grass-
lands or forests with high Cs proportions were probably for-
mer croplands before being afforested or converted to grass-
lands. The results for forests shall be taken with caution, as
the PARTYSOC model has not been trained on forests’ soils.
However, the results are realistic and consistent. It is also
worth mentioning that by its nature, the random forest model
used in PARTYSOC cannot extrapolate outside its training
values. While 85 % of the RMQS samples fall inside the
training values, it is possible that some unusual Ca or Cs val-
ues come from “outsider” samples.

The similar proportions of POC in vineyards and orchards
and grasslands were less expected as C inputs and contents
are reduced in vineyards and orchards (grass cover was very
sparse in vineyards and orchards at the time of the sam-
pling). This may be explained by differences in the com-
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Figure 3. Importance of the different categories of soil and environmental variables (climate, pedology, and land cover) for the four fractions
Cs, MAOC, Ca, and POC and with TOCea as a comparison (in gCkg−1 sample), assessed using the MDI and PI.

position of the particulate organic matter for the different
land cover types, as the particulate organic matter groups
together particles that can be biochemically quite heteroge-
neous (Schrumpf et al., 2013; Soucémarianadin et al., 2019).
In our study, the POC fraction in vineyards and orchards top-
soils might be much more biogeochemically stable than the
same fraction in cropland and grassland topsoils because of
the presence of more lignified woody debris and pyrogenic
C derived from the combustion of vine shoots. An extreme
example of soil with high proportion of POC and Cs can be
found at the Versailles long-term bare fallow site where top-
soils have a proportion of Cs close to 1 and a POC propor-
tion around 0.30, constituted essentially of charcoal (Chassé
et al., 2021). Our results therefore suggest that POC/MAOC
fractionation gives an erroneous view of biogeochemical sta-
bility for vineyards and orchards, which have the same POC
proportion as grassland but are very C depleted (9.5 vs.
24 gCkg−1). The biochemical nature of the fractions is un-
accounted for in our study as these data are not available, but
it is probably an important driver for POC quantities. The
fact that such an important driver is not taken into account
may explain the poorer performance of the model for POC
compared to the other fractions (36 % vs. 55 %–60 % for the
other fractions).

Regarding the mean values of all the fractions and concep-
tual pools in the four major land cover types (Table A3), it is
interesting to note that there is a 45 % loss of SOC between
grasslands and croplands on average (50 % between forests
and croplands). Specifically, this loss between grasslands and
croplands (and between forests and croplands) is 61 % (and
74 %) for POC, 55 % (and 61 %) for Ca, 41 % (and 35 %) for
MAOC, and 27 % (and 30 %) for Cs. It highlights a loss rank-
ing as follows: POC > Ca > MAOC > Cs; the bulk SOC has
intermediate loss values, which is consistent with the results

from Sanderman et al. (2021), showing a 30 % loss of bulk
SOC between grasslands and croplands.

4.2 SOC fractions with different quantities, drivers, and
biogeochemical stabilities

The significant differences between the Cs and MAOC quan-
tities on the one side and Ca and POC quantities on the other
side (Fig. 1) show that they do not correspond to the same
fractions. This result was expected due to the definition of
the four fractions, but it is evidenced for the first time on
a large dataset. Indeed, previous studies using isotopic mea-
surements observed that the mean residence times for MAOC
ranged from decades to centuries (Anderson and Paul, 1984;
Balesdent et al., 1987; Balesdent, 1996; von Lützow et al.,
2007; Kleber et al., 2015). By definition, Cs corresponds to
the conceptual pool of centennially stable SOC (Cécillon et
al., 2018, 2021). This implies that MAOC also encompasses
a certain amount of relatively labile SOC and therefore ex-
plains its larger quantity compared to Cs. Potentially, this
could partly be related to the fractionation method itself, in
which only size fractionation is employed to separate frac-
tions, so that the MAOC fraction might also contain a certain
amount of fine POC or soluble compounds (Lavallee et al.,
2020; Cotrufo et al., 2023). Conversely, the Ca fraction which
corresponds to the SOC fraction with a mean residence time
of 20–40 years (Kanari et al., 2022) is larger than the POC
fractions dominated by SOC with a generally shorter MRT
(Balesdent, 1996; von Lützow et al., 2007).

This ranking in terms of the MRT, Cs > MAOC > Ca >

POC, is also in line with the different environmental drivers
explaining the quantities of these four fractions, whatever the
selected method (the MDI or PI) (Fig. 3). Indeed, we ob-
served that the importance of land cover is much higher for
POC and Ca than it is for Cs and MAOC, whereas pedolog-
ical variables are much more important for Cs and MAOC
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fractions. The importance of land cover for SOC with a lower
MRT has already been documented in several studies. For
instance, Poeplau and Don (2013) observed that POC frac-
tions are very sensitive to land cover in topsoils, and Bales-
dent et al. (2018) showed that land cover is a major driver
of the incorporation of “young” C in topsoils, indicating a
smaller portion of SOC with a low MRT in croplands on
average compared to grassland and forest topsoils. The fact
that SOC with a higher MRT is mostly driven by soil vari-
ables and that SOC with a lower MRT is mainly explained
by land cover and climate was also evidenced by Mathieu
et al. (2015) using 14C in 122 profiles of mineral soil across
the world. They observed that the age of topsoil organic car-
bon, which is on average less biogeochemically stable than
deep SOC, was primarily affected by climate and land cover,
whereas the age of deep soil carbon was affected more by
soil type and soil characteristics such as clay content and
mineralogy. With a slightly different physical fractionation
– POC, humus OC, and resistant OC – and different, nu-
merous variables, Viscarra-Rossel et al. (2019) showed that
POC was influenced by climate (mostly MAT) but little by
vegetation; in contrast, the resistant OC showed less influ-
ence by climate and vegetation compared to the POC and
humus OC, and above all, it highlighted the difference be-
tween drivers at the global scale (Australia) vs. regional scale
(seven subdivisions). The little influence of land cover on the
stable fractions was somehow expected as most of French
soils have undergone a series of land cover changes during
the last millennia during which the stable fraction formed.
Regarding the bulk SOC, our results are in line with those of
Edlinger et al. (2023), who used a similar methodology on a
smaller dataset to investigate the drivers of SOC. While their
features were not strictly identical to ours (no iron oxyhy-
droxides for instance, but more climatic features), the main
categories that stand out as drivers of the SOC are pedology
(mostly exchangeable calcium) and climate, which is what
we observed.

Among pedological variables, iron oxyhydroxides (mostly
crystalline oxides) and exchangeable cations (mainly cal-
cium cations) were the factors with the greatest influence
on the size of the most stable Cs and MAOC fractions.
The strong influence of exchangeable cations and oxides on
MAOC has also been recently documented in a study in-
volving 16 agricultural sites in the United States (King et
al., 2023). The influence of iron oxides and hydroxides on
SOC biogeochemical stability is a well-known fact (Kögel-
Knabner et al., 2008), although it was pointed out that crys-
talline oxides were less efficient at providing bonding sites
for SOM. The importance of exchangeable cations, notably
calcium, on SOC biogeochemical stability was previously
documented (Rowley et al., 2018, 2021). Indeed, calcium
cations can strengthen the interactions between 2 : 1 clay
minerals and SOM, both negatively charged, or enable the
formation of co-precipitates with SOM.

Overall, our study confirms results from recent studies
conducted at regional and global scales showing that physi-
cal fractions have different drivers (King et al., 2023; Hansen
et al., 2024) and strongly supports the idea that it is relevant
and informative to consider SOC fractions (either physical
or thermal) instead of TOC alone. However, it is difficult to
compare our results directly with those of these recent stud-
ies. Indeed, the data processing strategies are different and
the explanatory variables considered are not the same. No-
tably, we observed that land cover and soil variables such
as exchangeable calcium and iron oxides were explanatory
variables of primary importance in explaining the quantities
of POC and MAOC, respectively. These variables were not
considered explanatory variables in the path analyses devel-
oped by Hansen et al. (2024), which likely explains the low
explained variations provided by these path analyses. Con-
versely, we did not consider net primary production (NPP)
an explanatory variable, which was found to be a significant
driver of MAOC quantities by Hansen et al. (2024). We there-
fore consider that new data that will probably arrive in the
next few years will enable us to refine the drivers of physical
and thermal fractions at different spatial scales.

4.3 Which fractionation method should be used to
assess SOC biogeochemical stability in soil
monitoring networks?

Several recent high-level political initiatives have highlighted
the importance of soil health for food security and climate
change mitigation and adaptation. These include, for in-
stance, the UNFCCC “Koronivia joint work on agriculture”
action, the “4 per 1000” initiative (http://www.4p1000.org,
last access: 28 November 2023, Rumpel et al., 2020), and the
new soil monitoring law proposed by the EU. These initia-
tives emphasize the importance of SOC by highlighting the
C sequestration potential of soils or by stressing the strong in-
fluence of SOC on soil health. This general political context
is favourable to the development and support of soil moni-
toring networks. In these networks, SOC content is always
measured. While these data are important, information on
SOC biogeochemical stability would be particularly useful.
Indeed, most soil functions related to SOM, such as nitrogen
mineralization, actually depend on its decay (Janzen, 2006),
and assessing biogeochemical stability is also of primary im-
portance to simulate SOC stock evolution (Luo et al., 2016).
In this context, the development of indicators of SOC biogeo-
chemical stability that can be implemented on large sample
sets is of particular relevance.

Both physical and thermal fractionation methods are good
candidates for this. Indeed, they both split SOC into two frac-
tions or conceptual pools of different biogeochemical sta-
bility using protocols that can be applied to large sample
sets. Each has its advantages and drawbacks regarding its
large-scale implementation for soil monitoring. The thermal
method is faster (1 h per sample); highly reproducible (Pacini
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et al., 2023); and, at least in France, less costly than the
physical method (EUR < 50 per sample vs. EUR > 100 per
sample in commercial laboratories), but it only provides vir-
tual fractions. POC/MAOC fractionation, on the other hand,
requires much time but no expensive equipment and is al-
ready used worldwide. Moreover some studies have pro-
posed to predict POC/MAOC fractions using a machine
learning model to make the method faster (Cotrufo et al.,
2019; Lugato et al., 2021). However, a recent study showed
that the results of such prediction methods can be question-
able and even misleading (Begill et al., 2023).

In this context, the question arises as to what method
should be used to determine biogeochemical stability in soil
monitoring networks. Our study, based on an unprecedented
sample set, reveals that the POC vs. Ca and MAOC vs. Cs
fractions are significantly different in size and do not have
exactly the same environmental drivers, meaning that they
are not biogeochemically equivalent. This suggests that the
two fractionation methods provide, at least partly, different
information and could be, at that stage, seen as complemen-
tary. Furthermore, they can also be used to answer different
questions: for example, physical fractionation methods can
be used, in combination with isotopic measurements (e.g.
13C), to study transformation and stabilization processes of
organic matter in soils (Cotrufo et al., 2015). Moreover, it is
probably premature to assess the relevance of the two proto-
cols at this stage, as interesting data will be provided by the
monitoring networks over the next few years. For instance,
with new SOC stock measurement campaigns, it will be pos-
sible to have measurements of SOC stock evolution, allow-
ing the proper evaluation of model SOC stock projections at
network scales (Le Noë et al., 2023). In addition, several in-
dicators of soil functions are to be measured at large scale for
soil health assessment. All these new data will enable us to
assess the extent to which the information on SOC biogeo-
chemical stability provided by fractionation results can be
used to improve the accuracy of SOC stock evolution simu-
lations and to gain a better understanding of soil functioning.
Such upcoming studies are likely to bring new key elements
to the emerging question of the redundancy or complemen-
tarity of physical and thermal fractionation schemes. New
analyses could also be performed by Rock-Eval® analysis on
soil samples before and after the specific removal of POM by
flotation. This could help disentangle the composition of the
Ca and Cs pools in terms of POC and MAOC.

5 Conclusion

This study allowed us to compare the POC/MAOC physical
fractionation and thermal fractionation on an unprecedented
number of samples with an interesting diversity with respect
to pedological characteristics, climatic characteristics, and
land cover. We showed that both the stable (Cs and MAOC)
and labile (Ca and POC) fractions strongly differ in quanti-
ties. While the environmental drivers were close for the two
stable fractions (and the two labile fractions), with a predom-
inance of the soil characteristics (and the climate and land
cover), they still presented differences, suggesting that Cs
and MAOC (and Ca and POC) correspond to different frac-
tions with different biogeochemical stability. This means that
both fractionation techniques display different and thus com-
plementary information. Future work will enable us to dis-
cuss the relevance of one technique rather than the other on a
case-by-case basis, depending on the soil properties studied.

SOIL, 10, 795–812, 2024 https://doi.org/10.5194/soil-10-795-2024



A. A. Delahaie et al.: Complementarity of thermal and physical SOC fractions 805

Appendix A

Figure A1. Comparison of the quantities of the more stable and more labile fractions for the physical and thermal SOC fractionation schemes,
with their correlation coefficient R2 and linear regression, limited to samples with a TOCea value comprised between 5 and 41.5 gkg−1 of
sample (included). Panel (a) shows the quantities of MAOC plotted against Cs. Panel (b) shows the quantities of POC plotted against Ca.
The dataset is the intersection dataset, i.e. samples for which thermal and physical data are available, with the same TOCea limitations as in
the PARTYSOC model training (n= 735).

Figure A2. Score of the 993 samples on axes 1 and 2 of the principal component analysis (PCA) on 14 pedoclimatic parameters: clay, fine
silt, coarse silt, fine sand, and coarse sand contents; pH in water; carbonate content; mean annual temperature and mean annual precipitation;
Tamm and Mehra–Jackson iron oxyhydroxide contents; and exchangeable calcium, magnesium, and potassium ions. Samples with an organic
carbon yield between 0.7 and 1.3 are plotted in light yellow, whereas samples with an organic carbon yield < 0.7 or > 1.3 are plotted in dark
red.
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Figure A3. Ratios of the fractions for the four major land covers. The black line in each box is the median, the lower and upper edges of
the black rectangle are the respective first (Q1) and third (Q3) quartiles, and the lower and upper whiskers are the maximum between the
minimum value or the first quartile minus 1.5 times the interquartile range (max[min;Q1− 1.5× (Q3−Q1)]) and the minimum between
the maximum or the third quartile plus 1.5 times the interquartile range (min[max;Q3+ 1.5× (Q3−Q1)]), respectively. Different letters
indicate significant differences in the distribution of the values for the land covers according to a Kruskal–Wallis test (p < 0.05) and a
pairwise Wilcoxon rank sum test (p < 0.05).
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Figure A4. Histograms of the fractions and conceptual pools contents in gkg−1 of soil, depending on the four major land covers.

Table A1. Hyper-parameters used by the random forest model for TOC and the four fractions of SOC.

Ca quantity Cs quantity TOC MAOC quantity POC quantity

RF training accuracy 0.639 0.707 0.667 0.690 0.668
RF testing accuracy 0.574 0.616 0.583 0.525 0.352
Number of estimators 200 600 400 600 200
Maximum number of features per tree 0.33 0.33 0.33 0.33 0.33
Maximum tree depths 4 4 4 4 4
Minimum number of samples per node 5 3 5 5 3
Minimum number of samples per leaf 3 3 3 5 3
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Table A2. Spearman correlation coefficients of the Ca content, Cs content, Cs proportion, POC content, MAOC content, POC proportion,
Cs/MAOC, MAOC−Cs, POC/Ca, and Ca−POC with the following pedoclimatic variables for the RMQS topsoil (0–30 cm) samples: clay,
total silt, total sand, TOCea, C/N ratio, mean annual temperature (MAT) averaged over 1969–1999, mean annual precipitation (MAP) aver-
aged over 1969–1999, pH in water, carbonate content (InoC), Tamm iron oxyhydroxides (crystalline), Mehra–Jackson iron oxyhydroxides
(amorphous), cation exchange capacity (CEC), exchangeable calcium, exchangeable magnesium, exchangeable potassium, exchangeable
aluminium, exchangeable iron, exchangeable sodium, and exchangeable manganese. The analysis was limited to samples meeting the re-
quired criterion for Rock-Eval® thermal analysis and/or physical fractionation. The number of samples presenting data for each calculation
is indicated. Absolute values ≥ 0.3 are in bold. The asterisks and superscript letters indicate p values: *** between 0 and 0.001, ** between
0.001 and 0.01, * between 0.01 and 0.05, a between 0.05 and 0.1, and b > 0.1. The values in italics have non-significant p values.

Cs Ca Cs MAOC POC POC Cs/MAOC MAOC POC/Ca Ca−
content content proportion content content proportion −Cs POC

Clay n= 1879 0.52 0.23 0.15 n= 958 0.39 0.18 −0.15 n= 843 0.17 0.17 −0.06 0.22
*** *** *** *** *** *** *** *** b ***

Total silt n= 1879 −0.04 −0.12 0.17 n= 958 −0.04 −0.18 −0.37 n= 843 −0.06 −0.05 −0.22 −0.12
b *** *** b *** *** a b *** ***

Total sand n= 1879 −0.28 −0.04 −0.22 n= 958 −0.20 0.03 0.36 n= 843 −0.06 −0.06 0.20 −0.04
*** a *** *** b *** b a *** b

TOCea n= 1879 0.91 0.98 −0.53 n= 960 0.96 0.86 0.32 n= 843 −0.27 0.82 0.01 0.90
*** *** *** *** *** *** *** *** b ***

C/N n= 1879 0.11 0.29 −0.40 n= 959 0.12 0.39 0.60 n= 843 −0.03 0.11 0.30 0.17
*** *** *** *** *** *** b ** *** ***

MAT n= 1879 −0.30 −0.45 −0.39 n= 960 −0.38 −0.30 −0.08 n= 843 0.33 −0.41 0.11 −0.40
1969–1999 *** *** *** *** *** * *** *** ** ***
MAP n= 1879 0.34 0.37 −0.27 n= 960 0.37 0.29 0.14 n= 843 −0.16 0.35 −0.02 0.38
1969–1999 *** *** *** *** *** *** *** *** b ***
pH n= 1879 0.15 −0.20 0.55 n= 960 −0.12 −0.17 −0.21 n= 843 0.43 −0.26 0.04 −0.25

*** *** *** *** *** *** *** *** b ***
InoC n= 1879 0.11 −0.03 0.16 n= 958 0.00 −0.04 −0.05 n= 843 0.14 −0.04 −0.03 −0.03

*** b *** b b b *** b b b
Tamm iron n= 1610 0.38 0.43 −0.25 n= 823 0.51 0.28 −0.09 n= 714 −0.24 0.49 −0.16 0.49

*** *** *** *** *** * *** *** *** ***
Mehra– n= 1609 0.49 0.27 0.06 n= 822 0.39 0.23 −0.05 n= 713 0.09 0.22 0.03 0.25
Jackson *** *** * *** *** b * *** b ***
iron
CEC n= 1879 0.61 0.31 0.13 n= 960 0.39 0.27 −0.05 n= 843 0.21 0.16 0.02 0.21

*** *** *** *** *** b *** *** b ***
Exch. Ca n= 1879 0.56 0.25 0.18 n= 960 0.33 0.20 −0.08 n= 843 0.24 0.10 0.02 0.15

*** *** *** *** *** * *** ** b ***
Exch. Mg n= 1879 0.25 0.15 0.04 n= 960 0.15 0.15 0.07 n= 843 0.15 0.02 0.07 0.07

*** *** a *** *** * *** b * *
Exch. K n= 1879 0.10 −0.04 0.18 n= 960 0.03 −0.08 −0.21 n= 843 0.15 −0.06 −0.07 −0.05

*** a *** b * *** *** b * b
Exch. Al n= 1879 0.11 0.39 −0.45 n= 960 0.37 0.33 0.21 n= 843 −0.33 0.43 −0.01 0.45

*** *** *** *** *** *** *** *** b ***
Exch. Fe n= 1879 0.26 0.35 −0.22 n= 960 0.28 0.31 0.17 n= 843 −0.10 0.25 0.08 0.29

*** *** *** *** *** *** ** *** * ***
Exch. Na n= 1879 −0.01 −0.02 0.08 n= 958 −0.02 0.00 0.09 n= 843 0.04 0.01 0.04 0.02

b a *** b b ** b b b b
Exch. Mn n= 1851 −0.04 0.09 −0.18 n= 947 −0.04 0.05 0.12 n= 832 −0.15 −0.00 0.04 −0.01

a *** *** b b *** *** b b b

Table A3. Mean values of the different fractions and conceptual pools in gkg−1 of soil for the four major land covers.

TOC POC MAOC Ca Cs POC/MAOC Ca/Cs

Croplands 16.89 2.37 14.20 8.52 8.37 0.17 1.02
Grasslands 30.19 6.04 23.89 18.74 11.45 0.25 1.64
Forests 33.33 9.09 21.76 21.39 11.95 0.42 1.79
Vineyards and orchards 11.47 2.68 10.23 4.40 7.07 0.26 0.62
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