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Abstract. Ground-based soil moisture measurements at the field scale are highly beneficial for different hydro-
logical applications, including the validation of space-borne soil moisture products, landscape water budgeting,
or multi-criteria calibration of rainfall–runoff models from field to catchment scale. Cosmic-ray neutron sensing
(CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares around the
instrument but only for the first few tens of centimeters of the soil. Many of these applications require informa-
tion on soil water dynamics in deeper soil layers. Simple depth-extrapolation approaches often used in remote
sensing may be used to estimate soil moisture in deeper layers based on the near-surface soil moisture informa-
tion. However, most approaches require a site-specific calibration using depth profiles of in situ soil moisture
data, which are often not available. The soil moisture analytical relationship (SMAR) is usually also calibrated
to sensor data, but due to the physical meaning of each model parameter, it could be applied without calibration
if all its parameters were known. However, its water loss parameter in particular is difficult to estimate. In this
paper, we introduce and test a simple modification of the SMAR model to estimate the water loss in the second
layer based on soil physical parameters and the surface soil moisture time series. We apply the model with and
without calibration at a forest site with sandy soils. Comparing the model results with in situ reference measure-
ments down to depths of 450 cm shows that the SMAR models both with and without modification as well as the
calibrated exponential filter approach do not capture the observed soil moisture dynamics well. While, on aver-
age, the latter performs best over different tested scenarios, the performance of the SMAR models nevertheless
meets a previously used benchmark RMSE of ≤ 0.06 cm3 cm−3 in both the calibrated original and uncalibrated
modified version. Different transfer functions to derive surface soil moisture from CRNS do not translate into
markedly different results of the depth-extrapolated soil moisture time series simulated by SMAR. Despite the
fact that the soil moisture dynamics are not well represented at our study site using the depth-extrapolation ap-
proaches, our modified SMAR model may provide valuable first estimates of soil moisture in a deeper soil layer
derived from surface measurements based on stationary and roving CRNS as well as remote sensing products
where in situ data for calibration are not available.
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1 Introduction

Soil moisture is a key parameter in the hydrological cycle
(e.g. Vereecken et al., 2008, 2014; Seneviratne et al., 2010). It
controls several aspects of the environment, such as soil infil-
tration, runoff dynamics, plant growth, and biomass produc-
tion, which in turn influence evapotranspiration as well as the
climatic conditions on varying spatio-temporal scales (see re-
views by e.g. Daly and Porporato, 2005; Vereecken et al.,
2008; Seneviratne et al., 2010; Wang et al., 2018). Thus, in-
formation on soil water dynamics at the field scale have great
importance for various larger-scale hydrological applications
ranging from landscape water budgeting to multi-criteria cal-
ibration approaches in rainfall–runoff modeling. However,
due to the high spatio-temporal variability in soil water con-
tent (Famiglietti et al., 2008; Vereecken et al., 2014), which
is highest in surface soil layers (Babaeian et al., 2019), mea-
suring field-scale soil moisture and its dynamics proves diffi-
cult based on invasive point-scale soil moisture measurement
methods as, for example, reviewed in Vereecken et al. (2014)
and Babaeian et al. (2019). For instance, the installation of
electromagnetic point sensors measuring at a high temporal
resolution would require a very large number of sensors to
obtain a representative field-scale average (Babaeian et al.,
2019). Additionally, sensor networks are not always feasible
as agricultural management practices hamper a permanent
installation of point sensors (Stevanato et al., 2019). As a
consequence, extensive point sensor networks, which allow
for the estimation of field-scale soil moisture are often re-
stricted to a rather small number of research-related monitor-
ing sites, such as the Terrestrial Environmental Observatories
(TERENO; http://www.tereno.net, last access: 15 Septem-
ber 2024) in Germany (e.g. Zacharias et al., 2011; Bogena
et al., 2018; Kiese et al., 2018; Heinrich et al., 2018) or the
International Soil Moisture Network (ISMN; Dorigo et al.,
2021), which cover sites around the globe.

Kodama et al. (1979), Kodama et al. (1985) and Dor-
man (2004) suggested the potential of naturally occuring
secondary neutrons produced by high-energy cosmic rays
for estimating soil and snow water. About a decade ago,
Zreda et al. (2008) and Desilets et al. (2010) introduced a
methodological framework for soil moisture estimation us-
ing cosmic-ray neutrons. The cosmic-ray neutron sensing
(CRNS) approach is a non-invasive geophysical method for
estimating representative field-scale soil moisture (Schrön
et al., 2018b) based on the measurement of cosmic-ray neu-
trons, which are inversely related to the amount of hydrogen
in the vicinity of the neutron detector. As soil water is the
largest pool of hydrogen in the footprint of the neutron de-
tector in most terrestrial environments, CRNS allows for the
measurement of integrated soil moisture of several hectares
around the instrument and the first decimetres of the soil (e.g.
Zreda et al., 2008; Desilets et al., 2010; Köhli et al., 2015;
Schrön et al., 2017).

Estimating soil moisture using CRNS has a high po-
tential for various hydrological applications, which require
soil moisture observations at the field scale. Several stud-
ies demonstrate the potential of CRNS-derived soil mois-
ture estimates for, for example, a comparison with satellite-
derived soil moisture products, their validation, and the im-
proved calibration of environmental models (e.g. Holgate
et al., 2016; Montzka et al., 2017; Iwema et al., 2017; Duygu
and Akyürek, 2019; Dimitrova-Petrova et al., 2020). Besides
stationary CRNS probes for the retrieval of field-scale soil
moisture time series, roving CRNS devices have been suc-
cessfully used in mapping CRNS-derived surface soil mois-
ture in even larger areas with instruments mounted on vehi-
cles (e.g. McJannet et al., 2017; Schrön et al., 2018a; Vather
et al., 2019), and Fersch et al. (2018) illustrate potential
synergies between CRNS, airborne radar, and in situ point
sensor networks for soil moisture estimation across spatial
scales. Due to the sensitivity of CRNS to any hydrogen in
the measurement footprint, snow monitoring (e.g. Schattan
et al., 2017, 2019; Gugerli et al., 2019), irrigation manage-
ment (e.g. D. Li et al., 2019), and biomass estimation (e.g.
Baroni and Oswald, 2015; Tian et al., 2016; Jakobi et al.,
2018; Vather et al., 2020) pose further fields of application
and are reviewed in Andreasen et al. (2017).

Although the large areal footprint of the CRNS-instrument
allows for the estimation of field-scale integral soil mois-
ture, the CRNS-derived time series lack soil moisture infor-
mation from greater depths. However, soil moisture at these
greater depths becomes highly relevant as soon as the rooting
depth of crops or forest extends past the first few decimeters.
The maximum rooting depth and, hence, root-zone extent as
well as root density along the soil profile vary with vege-
tation type and biome (e.g. Canadell et al., 1996; Jackson
et al., 1996). According to Jackson et al. (1996), on global
average across all biomes, 75 % of plant roots occur in the
first 40 cm of the soil, which would be largely covered by
the CRNS. However, the global average maximum rooting
depth and, thus, root-zone depth are about 4.6 m (Canadell
et al., 1996), where the rooting depth also depends on pre-
vailing soil hydrological conditions (Fan et al., 2017). Even
grassy vegetation and crops can have rooting depths of more
than 200 cm (Canadell et al., 1996), thus exceeding the mea-
surement depth of CRNS. Deep roots play a significant role
in the water supply of plant ecosystems, especially during
dry conditions (Canadell et al., 1996) – that is, through hy-
draulic redistribution (see, for example, Neumann and Car-
don, 2012) or increased root water uptake from deeper soil
layers under drought conditions (Maysonnave et al., 2022).
Furthermore, plant species influence infiltration and vertical
soil moisture patterns through species-dependent root distri-
butions (e.g. Jost et al., 2012) and horizontal soil moisture
patterns through species-dependent evapotranspiration and
interception rates (e.g. Schume et al., 2003). Hence, field-
scale soil water information from the deeper vadose zone that
overcomes these smaller-scale heterogeneities can be impor-
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tant for the quantification of water storage variations, poten-
tial influences on vegetation dynamics, matter fluxes, and the
characterization of the local hydrological cycle.

Given the importance of soil moisture in the deeper root
zone, extending CRNS measurements to greater depths is of
high importance in broadening the applicability of CRNS
for soil water estimations (Peterson et al., 2016). Numer-
ous studies extrapolate surface soil moisture time series to
greater depths using different empirical approaches (e.g.
Zhang et al., 2017; Li and Zhang, 2021), including regression
analyses; machine learning techniques; or other approaches,
such as the exponential filter/soil water index (SWI) (Wagner
et al., 1999; Albergel et al., 2008). Few studies address the
depth extrapolation of field-scale CRNS-derived soil mois-
ture time series (e.g. Peterson et al., 2016; Zhu et al., 2017;
Nguyen et al., 2019; Franz et al., 2020) to the shallow root
zone (approx. 100 cm) by applying and comparing extrapo-
lation approaches, with the SWI being the most commonly
used approach (e.g. Peterson et al., 2016; Dimitrova-Petrova
et al., 2020; Franz et al., 2020). All these approaches require
reference soil moisture information in the depth of interest
to either build an empirical model or calibrate the depth-
extrapolated soil moisture time series. This information may
not always be available in sufficient quantity and quality. In
contrast, the physically based soil moisture analytical rela-
tionship (SMAR) (Manfreda et al., 2014), which was applied
and modified in recent studies (e.g. Faridani et al., 2017;
Baldwin et al., 2017, 2019; Gheybi et al., 2019; Zhuang et al.,
2020; Farokhi et al., 2021), allows for the extrapolation of
daily surface soil moisture information to a second, lower
soil layer by solely relying on soil physical information and
a water loss term. This method does not require calibration if
the environmental parameters are known.

Against this background, we investigate the potential to
depth-extrapolate daily surface soil moisture time series
without calibration and thus without the need for reference
soil moisture information in the depth of interest by apply-
ing the SMAR algorithm at a highly instrumented study site
in the TERENO-NE observatory located in the lowlands of
north-eastern Germany. While soil physical parameters may
be determined from soil samples or directly in situ, the wa-
ter loss parameter that describes the water loss per unit time
from the second soil layer is more difficult to estimate. There-
fore, we propose a simple modification of the SMAR al-
gorithm to estimate the water loss term from soil physical
characteristics and from the surface soil moisture time se-
ries. We first compare the standard SMAR that uses a con-
stant calibrated water loss term (calibrated against in situ ref-
erence sensors) with the modified uncalibrated SMAR that
uses the estimated water loss term for different depths, down
to 450 cm, of the second soil layer. For comparison with the
two versions of the SMAR model, we also calibrate the ex-
ponential filter approach (Wagner et al., 1999; Albergel et al.,
2008) for the study site.

Different approaches exist to derive soil moisture from
observed neutron signals. The standard approach following
Desilets et al. (2010) is commonly used to derive soil mois-
ture from CRNS but has been found insufficient, especially
at observation sites with low soil moisture content. New ap-
proaches include the interdependence of the relationship be-
tween neutrons and soil moisture (Köhli et al., 2021) and
report an improved estimation of surface soil moisture with
CRNS.

The three depth-extrapolation approaches (SMAR, modi-
fied SMAR, and exponential filter) are therefore applied us-
ing different surface soil moisture time series, including sin-
gle point-scale in situ sensor profiles, averages of the entire
in situ sensor network, and CRNS-derived soil moisture from
different neutron-to-soil moisture transfer functions in order
to investigate the performance of the different approaches
and if a better CRNS-derived surface soil moisture time se-
ries translates to better estimates of the depth-extrapolated
soil moisture.

2 Material and methods

2.1 Study site

The study site is located in the TERENO-NE observatory
(Heinrich et al., 2018) in the young Pleistocene landscape
of north-eastern Germany (Fig. 1). The site hosts the CRNS
sensor Serrahn (Bogena et al., 2022). The site has a mean an-
nual temperature of 8.8 °C and mean annual precipitation of
591 mm yr−1, as measured at the long-term weather station in
Waren (in a distance of approximately 35 km), which is oper-
ated by the German Weather Service (station ID 5349; period
1981–2010) (DWD – German Weather Service, 2020a, b).
It is situated on the southern ascent of a glacial terminal
moraine formed during the Pomeranian Phase of the Weich-
selian glaciation in the Pleistocene (Börner, 2015). The dom-
inating soil types in the vicinity of the sensor are Cambisols
formed on aeolian sands, with depths of down to 450 cm, de-
posited during the Holocene (Rasche et al., 2023). Continu-
ing downwards, these are followed by deposited glacial till
of the terminal moraine, glacio-fluvial sediments, and glacial
till originating from earlier glaciations with the latter form-
ing the aquitard, the upper groundwater aquifer with water
level depths ranging between 13 and 14 m below the surface
(Rasche et al., 2023). A mixed forest dominated by European
beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) is
the dominant land cover type. A clearing covered by grassy
vegetation can be found nearby.

In order to calibrate the CRNS sensor, soil samples were
taken at different distances around the instrument in Febru-
ary 2019 as shown in Fig. 1. Soil samples were taken in 5 cm
depth increments from 0–35 cm using a split tube sampler
containing sampling rings in order to derive soil moisture,
soil physical characteristics, average grain size distributions,
soil organic matter, and lattice water from laboratory analy-
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Figure 1. (a) The location of the study area within Germany and (b) the location of the CRNS observation site Serrahn (digital elevation
model from LAIV-MV – State Agency for Interior Administration Mecklenburg-Western Pomerania, 2011; land cover from BKG – German
Federal Agency for Cartography and Geodesy, 2018).

ses as shown in Table 1. Soil moisture and soil bulk density
were determined by oven-drying at 105 °C for 12 h and gravi-
metric analyses of all individual soil samples. Subsequent
loss-on-ignition analyses at 550 and 1000 °C that lasted 24 h
were used to determine the amount of soil organic matter
and lattice water from bulk samples per depth, assuming that
no inorganic carbon is present in the acidic aeolian sands.
Soil porosity was estimated based on the material density of
quartz (2.65 g cm−3) and corrected for the amount of soil or-
ganic matter based on the density of cellulose (1.5 g cm−3).

In addition to the stationary CRNS instrument, the study
site is equipped with a groundwater observation well, a
weather station, and a network of in situ point-scale soil
moisture sensor profiles (type SMT100; Truebner GmbH,
Germany). A total of 59 in situ soil moisture sensors are de-
ployed in depths down to 450 cm in depth with 12 sensors
at 10 cm, 6 sensors at 20 cm, 8 sensors at 30 cm, 8 sensors
at 50 cm, 6 sensors at 70 cm, 4 sensors at 130 cm, 7 sensors
at 200 cm, and 4 sensors at 300 cm and 450 cm. The sensors
are located at distances of up to 22 m from the CRNS instru-
ment and continuously monitor the volumetric soil moisture
content based on the manufacturer’s calibration function.

2.2 Field-scale surface soil moisture derived with CRNS

Secondary neutrons are produced by primary cosmic rays in-
teracting with matter in the atmosphere and in the ground.
Depending on their energy level, secondary neutrons may
be classified as fast (0.1–10 MeV), epithermal (> 0.25–
100 keV), and thermal neutrons (< 0.25 eV) (e.g. Köhli et al.,
2015; Weimar et al., 2020). Cosmic-ray neutron sensing for
soil moisture estimation relies on the number of neutrons in
the epithermal energy range produced by nuclear evaporation
in the atmosphere and ground (Köhli et al., 2015). Epither-
mal neutrons are sensitive to elastic scattering by collision
with hydrogen and are further moderated to become thermal
neutrons (< 0.25 eV). Thus, the number of epithermal neu-
trons detected by the instrument is inversely correlated with
the amount of hydrogen in the sensitive measurement foot-
print of the sensor.

Epithermal neutron counts detected by the instrument are
influenced by the atmospheric pressure, the number of pri-
mary high-energy cosmic-ray neutrons entering the Earth’s
atmosphere from space (Zreda et al., 2012), and the vari-
ations in absolute air humidity (Rosolem et al., 2013) and
need to be corrected for these influencing factors before soil
moisture information can be derived. In this study, we use the
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Table 1. Soil physical characteristics at the CRNS site Serrahn obtained from laboratory analyses of soil samples (Rasche et al., 2023,
modified). Below the maximum sampling depth of 35 cm and down to the maximum depth of the aeolian sand deposits, the soil physical
parameters are assumed to have the same values as the layer between 30 and 35 cm. The soil moisture content at field capacity and wilting
point were taken from tabulated values in Sponagel et al. (2005) according to the respective soil grain size class (medium-fine sand) and the
soil bulk density of the individual layers.

Depth Grain size Bulk Porosity Organic Lattice Field Wilting
fractions density matter water capacity point

[cm] [% weight] [g cm−3] [–] [g g−1] [g g−1] [cm3 cm−3] [cm3 cm−3]

> 2 mm 2–0.63 mm 0.63–0.2 mm 0.2–0.063 mm < 0.063 mm

0–5 2.7 19.7 42.2 33.7 2.1 0.24 0.91 0.32 0.003 0.16 0.06
5–10 1.1 8.7 43.5 45.7 2.4 0.77 0.70 0.10 0.002 0.16 0.06
10–15 0.7 7.2 41.5 47.9 2.8 1.25 0.52 0.05 0.002 0.16 0.06
15–20 1.2 7.8 38.7 44.3 2.2 1.43 0.45 0.02 0.002 0.14 0.05
20–25 1.7 7.7 42.2 46.5 2.2 1.55 0.41 0.02 0.002 0.14 0.05
25–30 1.7 8.5 43.5 45.4 1.2 1.59 0.40 0.01 0.002 0.12 0.04
30–35 1.1 8.0 42.8 46.8 1.5 1.63 0.38 0.01 0.002 0.12 0.04
35–450 1.1 8.0 42.8 46.8 1.5 1.63 0.38 0.01 0.002 0.12 0.04

correction procedure for air pressure and incoming primary
cosmic-ray flux presented in Zreda et al. (2012). The correc-
tion factor for the shielding effect of the atmosphere can be
calculated from local air pressure measurements, where the
attenuation length,L, is set to 135.9 g cm−2 for the study area
(Heidbüchel et al., 2016). The correction factor for the in-
coming high-energy primary neutron flux was obtained from
hourly pressure and efficiency-corrected primary neutron in-
tensities (cps) of the Jungfraujoch neutron monitor (JUNG;
https://www.nmdb.eu, last access: 15 September 2024). Fur-
thermore, the neutron data were corrected for the influence of
absolute air humidity introduced by Rosolem et al. (2013).
The absolute humidity is calculated from relative humidity
and temperature observations of the weather station at the
observation site according to Rosolem et al. (2013). For all
correction approaches, the time series averages of air pres-
sure, incoming radiation and air humidity are used as the re-
quired reference values. Finally, a 25 h moving average filter
is applied to the corrected neutron time series to reduce noise
and uncertainty in the data (e.g. Schrön et al., 2018b).

θStandard =

ã0
1− Npih

Nmax

ã1−
Npih
Nmax

× ρsoil

ρwater


− (θSOM+ θLW) , (1)

where

ã0 =−a2, (2)

ã1 =
a1a2

a0+ a1a2
, (3)

Nmax =N0 ·
a0+ a1a2

a2
. (4)

Desilets et al. (2010) introduced a transfer function to con-
vert neutron counts into soil moisture by calibration against

reference measurements. Although other approaches exist
(e.g. Franz et al., 2013; Köhli et al., 2021), the Desilets equa-
tion became the methodological standard and can be rewrit-
ten as Eqs. (1)–(4) (Köhli et al., 2021), with a0 = 0.0808,
a1 = 0.372, and a2 = 0.115, and N0 is a local calibration pa-
rameter describing the neutron intensity above dry soil (De-
silets et al., 2010). As observed epithermal neutron intensi-
ties are sensitive to any hydrogen present in the measurement
footprint, the water equivalent of soil organic matter, θSOM,
and the amount of lattice water, θLW, in cm3 cm−3 need to
be subtracted in Eq. (1) to derive soil moisture. Additionally,
ρsoil describes the average soil bulk density in the measure-
ment footprint (g cm−3) and ρwater the density of water, as-
sumed to be 1 g cm−3. In this neutron-to-soil moisture trans-
fer function, the neutron intensity corrected for variations in
air pressure, the incoming primary neutron flux, and abso-
lute humidity, Npih, is used. However, a more recent study
by Köhli et al. (2021) suggests that the influence of absolute
air humidity and soil moisture on the observed epithermal
neutron signal is interdependent – that is, the shape of the
neutron–soil moisture relationship changes with absolute hu-
midity. The universal transport solution (UTS), Eqs. (5)–(6)
(Köhli et al., 2021), accounts for the changing relationship
between neutrons and soil moisture under different condi-
tions of absolute humidity, h, in g m−3.

Npi =ND ·

(
p1+p2 θtotal

p1+ θtotal
·

(
p3+p4 h+p5 h

2
)

+ e−p6 θtotal (p7+p8 h)
)
, (5)

where

θtotal = (θUTS+ θSOM+ θLW) ·
1.43gcm−3

ρsoil
. (6)
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The UTS is designed to describe the neutron intensity re-
sponse caused by changes in total soil water content and ab-
solute air humidity, and, therefore, the predicted neutron in-
tensity represents the intensity corrected for variations in at-
mospheric pressure and incoming primary neutron flux, Npi.
Soil moisture can be derived from the UTS using numeri-
cal inversion or a lookup table approach, which is used in
this study. In the lookup table approach, soil moisture val-
ues in the range from 0.0001 to 0.5 cm3 cm−3 in steps of
0.0001 cm3 cm−3 are used to predict the neutron intensity us-
ing the UTS for each time step. For each time step, the soil
moisture value that produces the smallest absolute difference
between the observed and predicted neutron intensity is then
assigned as the CRNS-derived soil moisture value. Analo-
gously to the standard transfer function, the UTS needs to be
calibrated locally. The calibration parameter, ND , may be in-
terpreted as the average neutron intensity of the local neutron
detector under the boundary conditions defined in the neutron
transport simulations, which were used to subsequently de-
rive the UTS. θtotal describes the total water content compris-
ing the sum of all below-ground hydrogen pools – namely,
the soil moisture content, θUTS, θSM, and θLW – which is then
scaled by ratio of the soil bulk used in the neutron transport
simulations to derive the UTS (1.43 g cm−3) and the local
soil bulk density at the study site, ρsoil (Köhli et al., 2021).
Different sets of shape-giving parameters, p1−p10, are avail-
able for the UTS in Köhli et al. (2021) and originate from the
different neutron transport models used and the fact whether
a simple energy window threshold (thl) was used (parameter
sets URANOS thl, MCNP thl) to evaluate the neutron trans-
port simulations or a more complex detector response func-
tion was applied (parameter sets: URANOS drf, MCNP drf).
The latter mimics the response of a real neutron detector and
is therefore expected to provide more accurate results. In the
scope of this study, we investigate which of the two transfer
functions and which parameter set of the UTS perform best
in estimating surface soil moisture.

The CRNS footprint diameter as well as the integration
depth decrease with increasing soil water content. The ra-
dius ranges between 130 and 240 m and the integration depth
ranges between 15 and 83 cm during wet and dry conditions,
respectively (Köhli et al., 2015). In addition, further factors
may influence the footprint dimensions, such as open water
or topography (e.g. Köhli et al., 2015; Schattan et al., 2019;
Mares et al., 2020). Consequently, reference measurements
need to be depth–distance-weighted according to the sensi-
tivity of the CRNS instrument in order to match field obser-
vations of reference measurements when calibrating the two
different transfer functions and derive soil moisture informa-
tion from observed neutron intensities. In this study, we adapt
the weighting procedure proposed by Schrön et al. (2017),
which takes the total water content, average bulk density, ab-
solute air humidity, and vegetation height (set to 20 m) into
account. Reference soil moisture information from the soil
sampling campaign in February 2019 was weighted accord-

ingly and used for calibrating both transfer functions.N0 and
ND were iteratively calibrated. For N0, the value producing
the smallest RMSE between soil moisture from soil samples
and the one predicted with Eqs. (1)–(4) was chosen. For ND ,
soil moisture information derived from soil samples for the
hours of the sampling campaign was used to predict neutron
intensities with Eqs. (5)–(6). The ND value that produced
the smallest RMSE between predicted and observed neutron
intensities was chosen. In a second step, the CRNS-derived
soil moisture time series are compared to an analogously
weighted average of all available in situ soil moisture sen-
sors at 10, 20, and 30 cm depth. In order to assess the impact
of the weighting procedure, the calibration is repeated using
the arithmetic soil moisture average from soil samples and
by comparing the CRNS-derived soil moisture time series to
the arithmetic average soil moisture time series from in situ
sensors.

2.3 Depth extrapolation of surface soil moisture time
series

2.3.1 Modification of the SMAR model

To estimate depth-extrapolated soil moisture time series for
a second, deeper soil layer from surface soil moisture time
series, the SMAR model is used. Introduced by Manfreda
et al. (2014), it allows for the physically based estimation
of soil moisture in an adjacent second, lower soil layer from
soil moisture information in a first, upper soil layer. SMAR is
based on the relative saturation in the first and second layer –
s1 (–) and s2 (–), respectively; the relative saturation at field
capacity, sc1 (–); and wilting point, sw2 (–). In order to trans-
form values from cm3 cm−3 to relative saturation, the respec-
tive variables are divided by the porosity of the individual
layer, n1 (cm3 cm−3) and n2 (cm3 cm−3). After applying the
SMAR model, the resulting relative saturation time series of
the second layer, s2 (–), is transformed back to volumetric
soil moisture in cm3 cm−3 by way of multiplication with n2
(cm3 cm−3), resulting in the depth-extrapolated soil moisture
time series, θLayer 2. Soil moisture in layer 2 at time t is cal-
culated by

s2 (ti)= sw2+ (s2 (ti−1)− sw2) · e−a·(ti−ti−1)

+ (1− sw2) · b · y (ti) · (ti − ti−1) , (7)

where a and b depend on the vertical extent of the first layer
(Zr1 in millimetres), which begins at the soil surface, and the
vertical extent of the second layer (Zr2 in millimetres). Zr2 is
the difference between the maximum depth of the second soil
layer and Zr1. The water loss term, V2, (mm t−1) comprises
the bulk water losses from the second layer due to percolation
and evapotranspiration per unit time:
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a =
V2

(1− sw2) · n2 ·Zr2
, (8)

b =
n1 ·Zr1

(1− sw2) · n2 ·Zr2
. (9)

The fraction of saturation of the first layer that instanta-
neously infiltrates into the second layer, y(ti) (–), is de-
scribed as follows (e.g. Manfreda et al., 2014; Patil and Ram-
sankaran, 2018):

y (ti)=

{
(s1 (ti)− sc1) , s1 (ti) ≥ sc1;

0, s1 (ti) < sc1.
(10)

The SMAR model can be applied using known soil phys-
ical and environmental variables. However, although the soil
physical parameters may be estimated through pedotrans-
fer functions, using tabulated values or global soil databases
(e.g. SoilGrids 2.0; Poggio et al., 2021), the bulk water loss
from the second layer, V2, is more difficult to estimate. This
hampers the use of SMAR without calibration against ref-
erence soil moisture information at the depth of interest –
that is, in the deeper soil layer. To overcome this issue, we
modified and extended the SMAR model (SMARmodified) in
order to estimate the V2 based on simple physical and envi-
ronmental soil variables and the surface soil moisture time
series. A modification of the SMAR model with an extended
definition of the water loss term, V2, has been suggested by
Faridani et al. (2017), leading to an improved performance
compared to the original SMAR model. As any modification
makes the SMAR model more complex and potentially less
easy to apply, our aim was to keep the complexity added to
the model low by only including three additional parame-
ters. These are the relative saturations at field capacity in the
second layer, sc2 (–), and the cumulative root fraction to the
maximum depth of the first and second layer – R1 (–) and R2
(–), respectively. The water loss term is then defined as the
sum of evapotranspiration, ET2 (mm t−1), and percolation,
P2 (mm t−1), from the second layer.

V2 = ET2+P2 (11)

We adapt the suggestion of Manfreda et al. (2014) to make
use of existing (surface) soil moisture time series to gain in-
formation about water loss from the soil by evapotranspira-
tion at a study site. Here, we estimate the individual amount
of evapotranspiration from the deeper layer, ET2, for each
time step based on the difference between the current and
past value of relative saturation of the first layer by scaling
the value to the dimension (i.e. extent) of the second layer
and by considering the difference in cumulative root fraction
between the two layers, assuming that root water uptake for
ET is larger in the layer with more roots (Eq. 13). The re-
quired root fraction, R (–), for maximum depth d (cm) of the

first and second layer is derived from the empirical equation
(Eq. 12) for forest biomes presented in Jackson et al. (1996):

R = 1− 0.970d . (12)

Using Eq. (13), ET2 can only be estimated from the change
in relative saturation in the first layer when (1) the relative
saturation of the first layer, s1, decreases; (2) no infiltration
into the second layer occurs; and (3) the relative saturation
of the second layer exceeds the relative saturation at wilt-
ing point. This means that both surface evaporation and tran-
spiration losses are scaled from the first layer to the sec-
ond layer. Although surface evaporation is hardly relevant
for the second layer due to its missing connection with the
surface, this is a reasonable yet simplified approach because
surface evaporation is a comparatively small component of
total evapotranspiration in forests, with transpiration domi-
nating ET (e.g. X. Li et al., 2019; Paul-Limoges et al., 2020).
The following applies:

ET2 (ti )=


(s1 (ti − 1)− s1 (ti )) · n1 s1 (ti − 1) ≥ s1 (ti ) ,
·Zr1 ·

Zr2
Zr1
·

(R2−R1)
R1

, y (ti ) > 0,
s2 (ti − 1) ≤ sw2;

0, otherwise.

(13)

The amount of percolation, P2, from the second layer is
estimated by analogy with the infiltration into this layer as an
instantaneous water loss when the relative saturation exceeds
field capacity, sc2 (Eq. 14):

P2 (ti)=

{
(s2 (ti − 1)− sc2) , s2 (ti − 1) ≥ sc2;

0, s2 (ti − 1) < sc2.
(14)

2.3.2 Comparison with the exponential filter method

To evaluate the performance of the original SMAR and the
modified version, SMARmodified, we also compared it to the
exponential filter approach (soil water index, SWI; Wagner
et al., 1999; Albergel et al., 2008). This approach is often
applied to depth-extrapolated surface soil moisture time se-
ries (e.g. Zhang et al., 2017; Tian et al., 2020). It has also
been used to depth-extrapolate surface soil moisture time se-
ries derived from CRNS (Peterson et al., 2016) as well as
to evaluate the performance of the SMAR model (e.g. Man-
freda et al., 2014). This exponential filter has a single cali-
bration factor: the characteristic time length, T (in days). Al-
though attempts have been made to investigate the controls
of T and relate its variability to climatic variables, vegetation
characteristics, and soil physical properties (e.g. Wang et al.,
2017; Bouaziz et al., 2020), the characteristic time length, T ,
is commonly treated as a bulk calibration parameter which
needs to be optimised against reference soil moisture infor-
mation.
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2.3.3 Application of depth-extrapolation approaches

We applied the SMAR model in its original form, with ag-
gregated daily soil moisture data, by calibrating the V2 wa-
ter loss term as a constant value, while the remaining soil
physical parameters were assigned according to Table 1. The
modified version of the SMAR model (SMARmodified) intro-
duced in this study was applied with the same soil physical
parameters but estimating daily V2 based on Eqs. (11)–(14).
Consequently, SMARmodified was applied completely with-
out calibration.

In order to apply and calibrate the exponential filter ap-
proach for comparison, the daily surface soil moisture time
series was converted to relative saturation by dividing it by
the porosity, n1. The extrapolated second-layer time series
of relative saturation based on the exponential filter is then
converted back to soil moisture by multiplying it with the
porosity of the second, deeper soil layer n2. The same poros-
ity values (Table 1) are used as for the application of SMAR
and SMARmodified.

The calibration and evaluation were performed against ref-
erence soil moisture time series in the deeper layer derived
from in situ sensors of the soil moisture sensor network
(SMN) that covers the entire study period. The reference soil
moisture content of the second, deeper soil layer was cal-
culated by weighting the individual sensor values according
to their representative layer extent. For example, having soil
moisture sensors installed at 30, 50, and 70 cm depth, the soil
moisture content per time step observed at 50 cm is represen-
tative of the layer between 40 and 60 cm. The soil physical
parameters assigned to the individual layers can be found in
Table 1 and were weighted in the same way. The calibra-
tion is performed by minimising the root mean square error
(RMSE) between the depth-extrapolated soil moisture time
series and the entire reference soil moisture time series of
the second soil layer.

The original SMAR with calibrated V2, the modified
SMAR model (SMARmodified) with estimated V2 (without
calibration), and the exponential filter with calibrated T were
applied to estimate a soil moisture time series in the second
soil layer with a maximum depth below terrain surface of 70,
130, 200, 300, and 450 cm. The depth of the first soil layer
was set to the median sensitive measurement depth of the
CRNS method for the study period. We calculated the me-
dian CRNS measurement depth of the entire CRNS-derived
soil moisture time series based on Schrön et al. (2017). Ac-
cording to Schrön et al. (2017), the sensitive measurement
depth, D86, is estimated using the calibrated CRNS-derived
soil moisture time series for distances from 1 to 300 m around
the instrument. Subsequent averaging allows for the estima-
tion of the average measurement depth in the CRNS footprint
for each time step of the time series. The time series me-
dian measurement depth, D86, is then calculated for the soil
moisture time series derived with the standard transfer func-
tion and the UTS. For both CRNS-derived soil moisture time

series, the estimated median sensitive measurement depth is
20 cm.

The three depth-extrapolation approaches are applied in
the following scenarios:

– Scenario Profile 1 and scenario Profile 2. Surface soil
moisture is estimated separately from two individual
profiles of in situ soil moisture sensors (average of the
two sensors installed at 10 and 20 cm depth), and depth
extrapolation is calibrated/evaluated against reference
second-layer soil moisture calculated from the deeper
sensors of the each individual sensor profile.

– Scenario SMNarithmetic. Surface soil moisture is esti-
mated with the arithmetic average of all in situ soil
moisture sensors of the SMN (depth averages of sensors
installed at 10 and 20 cm depth, with 12 and 6 sensors
per depth), and depth extrapolation calibrated/evaluated
against reference second-layer soil moisture calculated
from the arithmetic depth averages of all in situ sensors
of the SMN.

– Scenario SMNweighted. Weighted average surface soil
moisture is estimated after Schrön et al. (2017) from
all in situ soil moisture sensors of the SMN at 10, 20,
and 30 cm depth (26 in total), and depth extrapolation is
calibrated/evaluated against reference second-layer soil
moisture calculated from the arithmetic depth averages
of all in situ sensors of the SMN.

– Scenario CRNSRevised standard. Surface soil moisture
time series from CRNS are based on the standard trans-
fer function, and depth extrapolation is calibrated/eval-
uated against reference second-layer soil moisture cal-
culated from the arithmetic depth averages of all in situ
sensors of the SMN.

– Scenario CRNSUTS. Surface soil moisture time series
from CRNS are based on the UTS, and depth extrapo-
lation is calibrated/evaluated against reference second-
layer soil moisture calculated from the arithmetic depth
averages of all in situ sensors of the SMN.

All calculations were performed in R statistical software
(R Core Team, 2018, 2023) using the hydroGOF package
(Zambrano-Bigiarini, 2017, 2020) for calculating goodness-
of-fit measures which evaluate absolute values and time se-
ries dynamics – namely, the RMSE, the Kling–Gupta effi-
ciency (KGE) (Gupta et al., 2009), the Pearson correlation
coefficient, and the Nash–Sutcliffe efficiency.

3 Results and discussion

3.1 CRNS-derived surface soil moisture time series

The goodness of fit between the calibrated CRNS-based soil
moisture time series and the time series derived from in situ
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point observations is shown for the two transfer functions
(Table 2). When the different transfer functions are calibrated
against an arithmetic average soil moisture from soil sam-
ples and compared to an arithmetic average of soil moisture
time series at 10–30 cm depth, the Pearson correlation coef-
ficient and the KGE are lower than when using a weighted
average of soil moisture observations for calibration as pro-
posed by Köhli et al. (2015) and Schrön et al. (2017). How-
ever, the RMSE is slightly higher for calibration against the
weighted observations. This might be linked to differences
between the laboratory measurements of soil moisture in the
soil samples (which were used for calibration) and the con-
tinuous soil moisture data obtained from the in situ sensors.
Overall, however, in view of the much better KGE and cor-
relation values, the results underline the importance of the
weighting procedures when calibrating the CRNS observa-
tions to derive soil moisture estimates or comparing them to
observations from in situ soil moisture sensors.

The goodness of fit of the CRNS-derived soil moisture
time series that are based on the revised standard transfer
function is always lower than for those that are derived with
the UTS. All parameter sets, especially when the KGE is con-
sidered, show the improved soil moisture estimation with the
UTS. However, the parameters sets of the UTS that mimic
the varying sensitivity of a real neutron detector to neutrons
of different energies (URANOS drf and MCNP drf) perform
worse than those which rely on a simple energy range thresh-
old (URANOS thl and MCNP thl). This counter-intuitive re-
sult has been previously described by Köhli et al. (2021) and
could be related to the high sensitivity of the CRNS method
to the soil moisture dynamics in the first few centimetres of
the soil, where unfortunately no in situ sensors are installed
(the uppermost sensors are installed at 10 cm depth). There-
fore, the better performance of the energy threshold param-
eter sets of the UTS can be related to insufficient reference
soil moisture information from the in situ sensor network.
Generally, the UTS with the parameter sets that represent the
response of a real neutron detector can be expected to pro-
vide more accurate results. Here, the UTS with parameter set
MNCP drf reveals a higher statistical goodness of fit com-
pared to the URANOS drf parameter set, which is in line with
the findings presented in Köhli et al. (2021). The improved
performance of the UTS with parameter set MNCP drf com-
pared to the standard transfer function is shown in Fig. 2,
revealing that the latter tends to overestimate soil moisture
under the wet winter conditions and underestimate soil mois-
ture under dry summer conditions.

Differently from the study of Köhli et al. (2021), which in-
troduced the UTS, we apply UTS to derive soil moisture from
neutron observations at a forest site. The UTS calibration pa-
rameter, ND , represents the average count rate under bound-
ary conditions of the neutron transport simulations conducted
to derive the UTS. Therefore,ND can be expected to be close
to the average corrected neutron intensity observed at a study
site with little or without vegetation or other above-ground

hydrogen pools influencing the observed neutron intensity.
At our study site, the calibrated ND is much higher than the
observed average corrected neutron intensity, Npi (557 cph).
This is probably caused by the influence of the forest veg-
etation on observed neutron intensities and the calibration
parameter of the transfer function and has been similarly
described for the standard transfer function by Baatz et al.
(2015). As hydrogen stored in air humidity influences the
functional relationship between neutron intensities and soil
moisture, hydrogen stored in vegetation might have a simi-
lar effect. Therefore, a correction or inclusion approach for
other above-ground hydrogen pools such as vegetation may
yield an even better performance of the UTS and may be in-
vestigated in future studies.

Our analyses confirm the improved performance of the
UTS compared to the standard transfer function. In order to
test whether the improved performance in deriving surface
soil moisture translates into a better estimation of soil mois-
ture in deeper layers, we apply the SMAR model using the
surface soil moisture time series based on both the revised
standard transfer function and the UTS with the MCNP drf
parameter set (Fig. 2).

3.2 Depth extrapolation of surface soil moisture time
series

The performance of the different depth-extrapolation ap-
proaches – that is, based on the calibrated original SMAR
(calibrated water loss only), the uncalibrated SMARmodified
(estimated water loss based on Eqs. 11–14), and the expo-
nential filter approach (calibrated characteristic time length
parameter) – for the different scenarios is listed in Tables A1–
A3 and shown in Fig. 3. Figure 3 also includes a RMSE
threshold of ≤ 0.06 cm3 cm−3, which has been used to eval-
uate the original SMAR performance in previous studies
(Baldwin et al., 2019; Guo et al., 2023). In all scenarios and
all depths, with the exception of SMARmodified in the Pro-
file 2 scenario, the RMSE of depth-extrapolated time series
lies below this threshold, indicating that both SMAR mod-
els and the exponential filter approach result in acceptable
soil moisture time series for the second soil layer down to
450 cm depth. However, goodness-of-fit indicators more sen-
sitive to temporal dynamics, such as the KGE and the NSE,
show negative values, indicating an insufficient simulation
of the temporal dynamics of second-layer soil moisture time
series compared to the reference. This can also be seen in
Fig. 5, which shows the extrapolated soil moisture time se-
ries with the different approaches in a second layer, with a
maximum depth of 130 cm. For example, comparing the sce-
narios of Profile 1 and Profile 2, the performance of the in-
dividual extrapolation approaches in terms of capturing the
temporal soil moisture dynamics can differ strongly. These
strong differences and largely unsatisfactory representation
of soil moisture dynamics indicate that the RMSE thresh-
old used in previous studies to evaluate the performance of
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Table 2. Goodness of fit between the CRNS-derived soil moisture time series and the arithmetic and weighted average soil moisture time
series from the local in situ point-sale soil moisture sensors at 10–30 cm depth. The different neutron-to-soil moisture transfer functions
are independently calibrated against soil moisture from soil samples taken in February 2019. The UTS transfer function can be used with
different parameter sets, originating from different neutron transport models, which are based on either energy level threshold (thl) or a more
realistic detector response functions (drf).

Transfer function In situ soil moisture Calibration parameter [cph] KGE [–] RMSE [cm3 cm−3] Pearson correlation [–]

Revised standard

Arithmetic average

777 0.08 0.030 0.88
UTS URANOS drf 1245 0.14 0.029 0.86
UTS URANOS thl 1596 0.59 0.020 0.87
UTS MCNP drf 1294 0.33 0.025 0.87
UTS MCNP thl 1645 0.59 0.021 0.87

Revised standard

Weighted average

809 0.46 0.030 0.91
UTS URANOS drf 1302 0.49 0.029 0.89
UTS URANOS thl 1693 0.81 0.022 0.90
UTS MCNP drf 1357 0.60 0.027 0.90
UTS MCNP thl 1741 0.77 0.023 0.90

Figure 2. Soil moisture estimates with CRNS. (a) Estimated time-variable-sensitive measurement depth D86 of the CRNS approach and
precipitation time series (light-blue bars), (b) soil moisture time series derived with the revised standard transfer function and the UTS with
parameter set MCNP drf, and (c) a period in 2022 illustrating the differences between the two CRNS-derived soil moisture time series.

depth-extrapolation approaches should be treated with cau-
tion. Regarding the exponential filter method, it should be
noted that the maximum T value of 300 d defined in this
study was reached during calibration in some scenarios, as
displayed in Fig. 4.

Figure 3 also shows the goodness-of-fit parameters be-
tween surface soil moisture time series of the respective sce-
nario and the reference soil moisture time series in the sec-
ond soil layer in order to test if any of the depth extrapola-
tions perform better than simply assuming that the soil mois-
ture in the second layer is similar to the surface soil moisture
time series. However, all depth-extrapolation approaches, in-
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Figure 3. Goodness-of-fit parameters derived for the depth-extrapolation approaches in the individual scenarios depending on maximum
second-layer depths. In addition to the three depth-extrapolation methods applied in this study, the comparison with the surface soil moisture
time series is also shown. For the RMSE, a threshold value 0.06 cm3 cm−3 is indicated by the horizontal grey line.

cluding the uncalibrated SMARmodified, show a better per-
formance in most scenarios and especially in larger depths.
This indicates that if no reference soil moisture time series
for calibration in the depth of interest is available, the un-
calibrated SMARmodified provides better results than simply
using the available surface soil moisture time series as a first
estimate for the soil moisture time series in a second, deeper
layer of interest. An exception to this finding is scenario Pro-

file 2, where the NSE and RMSE of all depth-extrapolation
approaches perform worse compared to using the surface soil
moisture time series as the predicted time series in the second
soil layer. Comparing the scenarios Profile 1 and Profile 2
in Fig. 5 shows large differences in the surface soil moisture
time series between the two scenarios but a rather similar ref-
erence soil moisture time series in the second soil layer. This
indicates small-scale heterogeneity of surface soil moisture
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Figure 4. Optimum calibration parameters (minimum RMSE) de-
rived for the different extrapolation approaches and depths in the
individual scenarios. For SMARmodified, the time series average of
V2 is shown.

within the SMN caused by, for example, heterogeneous in-
filtration, root water uptake, and preferential flow processes.
Preferential flow in macropores, including bypass flow along
roots (e.g. Nimmo, 2021), can result in highly conductive
forest soils with infiltrating water being quickly transported
from the surface to deeper layers and bypassing, for example,
individual point-scale sensors. Heterogeneous evapotranspi-
ration, interception (e.g. Schume et al., 2003), and root dis-
tribution patterns (e.g. Jost et al., 2012) add to the surface
soil moisture heterogeneity in forests, which may explain the
differing performance of all depth extrapolation approaches
at different individual profiles of in situ soil moisture sen-
sors. In larger depths with, for example, lower root densities,
more similar soil moisture dynamics can be expected, which
would explain the more similar soil moisture dynamics be-
tween the two individual sensor profiles. When assessing the
results obtained from using the in situ sensor, it should also
be noted that the use of the manufacturer’s calibration func-
tion adds additional uncertainty to the results.

Using averages of in situ soil moisture sensor net-
works therefore improves the performance of all depth-
extrapolation approaches as shown in Fig. 6. Scenarios
SMNarithmetic and SMNweighted as well as both CRNS scenar-
ios generally show a higher goodness of fit for most depth-
scaling approaches. This highlights the need for a represen-
tative estimation of surface soil moisture at complex study
sites with strong small-scale heterogeneities in soil moisture
and soil hydrological processes when depth-extrapolating
surface soil moisture time series and underlining the poten-
tial of CRNS. The differences between SMNarithmetic and
SMNweighted are rather small, indicating only a minor im-
pact of using a weighted surface soil moisture time series and
comparing it to a reference second-layer soil moisture time
series calculated from arithmetic averages. Similarly, the dif-
ference between CRNSRevised standard and CRNSUTS is rela-
tively small, with a slightly higher goodness of fit in scenario
CRNSUTS. However, as the differences are small, a clear con-
clusion that a better CRNS-derived surface soil moisture time
series translates into a better depth-extrapolated time series
cannot be drawn from the results of this study. This may also
be linked to the differences in the CRNS-derived surface soil
moisture time series being smaller than the uncertainties in-
troduced by the different depth-extrapolation approaches.

In contrast, larger differences can be found between SMN
scenarios (SMNarithmetic and SMNweighted) and CRNS sce-
narios (CRNSRevised standard and CRNSUTS), where the latter
two often show lower goodness-of-fit parameters for the dif-
ferent extrapolation approaches as expressed by, for example,
a lower KGE. This can be related to general differences be-
tween the surface soil moisture derived from the SMN and
CRNS and could be related to the sensor locations of the
SMN not being representative of the sensitive measurement
footprint of CRNS. Also, the changing sensitive measure-
ment depth of CRNS with soil moisture content may cause
uncertainties when using a constant (median) sensitive mea-
surement depth of 20 cm for the first soil layer in the depth-
extrapolation approaches. Although this effect may be small,
particularly on the daily time step, smoothing hourly CRNS
data prior to estimating surface soil moisture and aggregating
daily soil moisture estimates could contribute to the poorer
performance of depth-extrapolated time series in the CRNS
scenarios compared to the SMN scenarios.

Averaged over all tested scenarios, none of the three depth-
extrapolation approaches properly represent the time series
dynamics the our study site, as indicated by negative mean
NSE values and KGE values being below 0.5 (Fig. 7). The
highest average goodness of fit is obtained when applying
the exponential filter approach calibrated against reference
soil moisture measurements in the second soil layer of in-
terest. The uncalibrated SMARmodified shows average RMSE
and NSE values lying largely between the exponential filter
approach and the calibrated SMAR in its original form, in-
dicating that the introduced SMARmodified can compete with
the (calibrated) original SMAR and can be applied without
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Figure 5. Daily depth-extrapolated soil moisture time series of the different scenarios and depth-extrapolation approaches for a depth of
130 cm. The respective surface soil moisture time series for the first soil layer (0–20 cm) and the reference soil moisture time series for the
deeper, second soil layer (20–130 cm) are also shown.

calibration to derive first estimates of soil moisture in a sec-
ond, deeper layer.

Nevertheless, none of the three approaches produce sat-
isfactory results in terms of soil moisture dynamics, which
may be explained by the particular water flow dynamics at
our study site located in a mixed forest with sandy soils.
Complex preferential flow and infiltration processes are un-

likely to be properly captured by any of the three depth-
extrapolation approaches. This is especially true for SMAR
and SMARmodified as they allow for water movement only for
soil moisture conditions above field capacity. In contrast, the
exponential filter includes a constant dependence between
the surface soil moisture dynamics of the first and of the
deeper, second layer, which could be an explanation for its
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Figure 6. Goodness-of-fit parameters per depth-extrapolation approach and maximum second-layer depth for the individual scenarios.

higher average performance at our study site, with expected
highly conductive soils due to, for example, preferential flow
processes. In addition, the decreasing number of reference in
situ soil moisture sensors with increasing soil depth may lead
to a lower representativeness of the reference soil moisture
time series at greater depths, lowering comparability to the
model results. However, with point sensors installed down to
450 cm, this study allows for the exploration of the poten-
tial of simple depth-extrapolation approaches for larger soil
depths than commonly applied.

An important limitation of the present study for evaluat-
ing the standard and the introduced modified SMAR mod-
els is its application to a single observation site. Further-
more, other empirical approaches, such as regression models
(e.g. Zhang et al., 2017) and cumulative distribution function
matching (e.g. Gao et al., 2018), as well as other versions
of the SMAR model (e.g. Faridani et al., 2017) would allow
for an improved evaluation of the presented modification of
the SMAR model and should be assessed in future studies at
sites with a broader range of climatic conditions, vegetation
covers, and soils.

4 Conclusions

In the present study, we investigated the feasibility of depth-
extrapolating surface soil moisture time series derived from

CRNS to deeper soil layers without additional in situ soil
moisture information for calibration. We furthermore evalu-
ated the universal transport solution (UTS) for the estimation
of field-scale soil moisture from CRNS neutron counts.

Being among the first who evaluate the UTS as a new
transfer function to estimate field-scale surface soil mois-
ture information from CRNS, we confirm its improved per-
formance compared to the standard approach. The UTS ac-
counts for the interdependence of soil moisture and air hu-
midity on the observed neutron intensity, as it is most impor-
tant for dry soil conditions. Although applied at a forested
site with rather dry soils but with large amounts of above-
ground hydrogen stored in the local biomass and influenc-
ing the neutron signal, CRNS-derived soil moisture estimates
can be improved in contrast to established transfer functions.
Thus, our results suggest that the UTS should be used for an
improved estimation of surface soil moisture in future CRNS
research and applications.

We modified SMAR for estimating soil moisture time se-
ries in a second, deeper layer in a way that it allows it to be
applied without calibration against in situ sensors and with
soil physical properties and the cumulative root fraction as
a vegetation parameter only. Our analyses show that, on av-
erage, the uncalibrated SMARmodified can compete with the
original SMAR model down to a maximum depth of the sec-
ond soil layer of 450 cm when the same soil physical prop-
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Figure 7. Goodness-of-fit parameters of the three depth-extrapolation approaches averaged for all scenarios.

erties are assigned and only the water loss term is calibrated.
However, depending on the tested scenario, major temporal
dynamics of the reference in situ soil moisture in the second
soil layer are captured by neither the original nor the modi-
fied SMAR or the exponential filter approach. This is likely
linked to the location of the study site: a forest with sandy
soils, which results in soil moisture being influenced by pro-
cesses such as preferential flow and root water uptake. These
processes are difficult to simulate, especially with rather sim-
ple modeling approaches. On average, the calibrated expo-
nential filter method performed best in predicting soil mois-
ture in a deeper, second soil layer.

Although our study suggests that improved surface soil
moisture estimates from CRNS do not translate to distinctly
improved soil moisture estimates in greater depths at our
study site, a more accurate estimation of CRNS-derived soil
moisture information can be generally expected to lead to
better results of the depth-extrapolation approaches.

Given the overall performance of the SMAR model at our
single study site, further research and testing of the presented
modified version of the SMAR model with and without cal-
ibration at sites with varying climatic conditions, vegeta-
tion cover, and soil properties are necessary and encouraged
for future studies. Despite the overall unsatisfactory perfor-
mance of the SMAR model with respect to accurately captur-
ing soil moisture dynamics at our study site, it meets the de-
fined RMSE benchmark of ≤ 0.06 cm3 cm−3, and the simple
modification of the SMAR algorithm may serve as a valuable
first estimate of soil moisture from a second, deeper soil layer
when in situ reference soil moisture information for calibra-
tion are not available and the soil physical parameters can be
estimated reasonably well.

In CRNS research, this modified SMAR approach opens
up potential for roving CRNS, e.g. by mounting CRNS in-
struments on cars (e.g. Schrön et al., 2018a) or trains (e.g.
Schrön et al., 2021; Altdorff et al., 2023) moving beyond the
field-scale of stationary CRNS applications, thereby provid-
ing valuable information for landscape water balancing or
hydrological catchment models on larger scales. Moreover,
the modified SMAR approach introduced in this study is not
limited to CRNS applications. It may also be used in estimat-
ing root-zone soil moisture at greater depths using satellite-
derived surface soil moisture, where the original SMAR al-
ready proved useful (e.g. Baldwin et al., 2017, 2019; Gheybi
et al., 2019).
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Appendix A

Table A1. Statistical goodness of fit between the depth-extrapolated daily surface soil moisture time series and the reference soil moisture
time series in the second layer extending from 20 to 70 and 130 cm for the different scenarios. The asterisk indicates that the maximum
allowed characteristic time length value, T , was reached during calibration of the exponential filter method. Exp. stands for exponential.

Layer 2 extent [cm] Scenario Extrapolation approach Calibration V2 [mm d−1] T [d] RMSE [cm3 cm−3] KGE [–] NSE [–]

SMAR Yes 1 – 0.055 0.091 −9.066

Profile 1 SMARmodified No – – 0.032 −0.142 −2.363

Exp. filter Yes – 1 0.040 0.068 -4.240

SMAR Yes 53 – 0.042 −0.115 −6.785

Profile 2 SMARmodified No – – 0.044 −0.161 −7.489

Exp. filter Yes – 300∗ 0.043 0.338 −7.208

SMAR Yes 18 – 0.038 0.297 −4.221

SMNarithmetic SMARmodified No – – 0.031 −0.079 −2.309

Exp. filter Yes – 3 0.019 0.634 −0.305

20–70 SMAR Yes 19 – 0.038 0.252 −3.958

SMNweighted SMARmodified No – – 0.029 −0.102 −2.022

Exp. filter Yes – 3 0.018 0.619 −0.097

SMAR Yes 56 – 0.034 0.210 −3.202

CRNSRevised standard SMARmodified No – – 0.037 −0.063 −3.997

Exp. filter Yes – 255 0.017 0.480 −0.090

SMAR Yes 51 – 0.034 0.217 −3.252

CRNSUTS SMARmodified No – – 0.035 −0.517 −3.479

Exp. filter Yes – 164 0.016 0.570 0.062

SMAR Yes 48 – 0.057 −0.055 −12.754

Profile 1 SMARmodified No – – 0.031 −0.163 −3.130

Exp. filter Yes – 300∗ 0.041 0.017 −6.113

SMAR Yes 2 – 0.058 −0.363 −9.163

Profile 2 SMARmodified No – – 0.064 −0.370 −11.418

Exp. filter Yes – 1 0.057 0.324 −8.846

SMAR Yes 16 – 0.040 0.021 −5.396

SMNarithmetic SMARmodified No – – 0.036 0.093 −3.991

Exp. filter Yes – 3 0.021 0.563 −0.79

20–130 SMAR Yes 17 – 0.039 0.181 −5.069

SMNweighted SMARmodified No – – 0.032 −0.081 −3.116

Exp. filter Yes – 3 0.02 0.546 −0.508

SMAR Yes 48 – 0.036 0.093 −4.086

CRNSRevised standard SMARmodified No – – 0.029 −0.422 −2.387

Exp. filter Yes – 300∗ 0.019 0.318 −0.496

SMAR Yes 44 – 0.036 0.093 −4.140

CRNSUTS SMARmodified No – – 0.028 −0.310 −2.083

Exp. filter Yes – 300∗ 0.018 0.295 −0.302
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Table A2. Statistical goodness of fit between the depth-extrapolated daily surface soil moisture time series and the reference soil moisture
time series in the second layer extending from 20 to 200 and 300 cm for the different scenarios. The asterisk indicates that the maximum
allowed characteristic time length value, T , was reached during calibration of the exponential filter method. Exp. stands for exponential.

Layer 2 extent [cm] Scenario Extrapolation approach Calibration V2 [mm d−1] T [d] RMSE [cm3 cm−3] KGE [–] NSE [–]

SMAR Yes 56 – 0.048 −0.175 −15.889

Profile 1 SMARmodified No – – 0.028 −0.549 −4.836

Exp. filter Yes – 300∗ 0.031 0.031 −6.158

SMAR Yes 8 – 0.059 −0.327 −9.794

Profile 2 SMARmodified No – – 0.068 −0.469 −13.265

Exp. filter Yes – 1 0.058 0.303 −9.356

SMAR Yes 16 – 0.036 0.156 −5.494

SMNarithmetic SMARmodified No – – 0.034 −0.242 −4.678

Exp. filter Yes – 23 0.018 0.556 −0.611

20–200 SMAR Yes 17 – 0.035 0.133 −5.133

SMNweighted SMARmodified No – – 0.031 −0.193 −3.907

Exp. filter Yes – 35 0.16 0.606 −0.325

SMAR Yes 51 – 0.032 0.089 −4.089

CRNSRevised standard SMARmodified No – – 0.027 −0.461 −2.567

Exp. filter Yes – 300∗ 0.017 0.311 −0.449

SMAR Yes 47 – 0.32 0.092 −4.128

CRNSUTS SMARmodified No – – 0.026 −0.369 −2.321

Exp. filter Yes – 208 0.016 0.400 −0.255

SMAR Yes 81 – 0.032 −0.045 −12.728

Profile 1 SMARmodified No – – 0.026 −1.150 −8.273

Exp. filter Yes – 300∗ 0.017 −0.028 −2.987

SMAR Yes 21 – 0.044 −0.235 −8.774

Profile 2 SMARmodified No – – 0.054 −0.492 −14.104

Exp. filter Yes – 1 0.043 −0.298 −8.472

SMAR Yes 21 – 0.026 0.232 −4.356

SMNarithmetic SMARmodified No – – 0.028 −0.521 −5.113

Exp. filter Yes – 78 0.011 0.581 0.108

20–300 SMAR Yes 23 – 0.025 0.249 −4.022

SMNweighted SMARmodified No – – 0.027 −0.498 −4.576

Exp. filter Yes – 82 0.010 0.596 0.203

SMAR Yes 67 – 0.023 0.184 −3.158

CRNSRevised standard SMARmodified No – – 0.027 −0.870 −4.717

Exp. filter Yes – 225 0.016 0.302 −1.070

SMAR Yes 62 – 0.023 0.191 −3.179

CRNSUTS SMARmodified No – – 0.027 −0.769 −4.490

Exp. filter Yes – 182 0.016 0.368 −0.988
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Table A3. Statistical goodness of fit between the depth-extrapolated daily surface soil moisture time series and the reference soil moisture
time series in the second layer extending from 20 to 450 cm for the different scenarios. The asterisk indicates reaching the maximum allowed
characteristic time length value, T , during calibration of the exponential filter method. Exp. stands for exponential.

Layer 2 extent [cm] Scenario Extrapolation approach Calibration V2 [mm d−1] T [d] RMSE [cm3 cm−3] KGE [–] NSE [–]

SMAR Yes 181 – 0.013 0.346 −4.083

Profile 1 SMARmodified No – – 0.031 −2.101 −26.355

Exp. filter Yes – 300∗ 0.018 −0.508 −7.850

SMAR Yes 27 – 0.033 −0.173 −4.179

Profile 2 SMARmodified No – – 0.044 −0.258 −8.314

Exp. filter Yes – 45 0.032 0.369 −3.916

SMAR Yes 38 – 0.015 0.382 −1.65

SMNarithmetic SMARmodified No – – 0.023 −0.704 −5.442

Exp. filter Yes – 160 0.015 0.444 −1.728

20–450 SMAR Yes 40 – 0.014 0.429 −1.461

SMNweighted SMARmodified No – – 0.024 −0.827 −6.041

Exp. filter Yes – 152 0.016 0.447 −2.307

SMAR Yes 122 – 0.014 0.427 −1.187

CRNSRevised standard SMARmodified No – – 0.032 −1.373 −11.435

Exp. filter Yes – 199 0.025 −0.064 −6.573

SMAR Yes 112 – 0.014 0.427 −1.191

CRNSUTS SMARmodified No – – 0.032 −1.268 −11.385

Exp. filter Yes – 174 0.026 0.022 −6.900
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