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Abstract. Spatially explicit prediction of soil organic carbon (SOC) serves as a crucial foundation for effective
land management strategies aimed at mitigating soil degradation and assessing carbon sequestration potential.
Here, using more than 1000 in situ observations, we trained two machine learning models (a random forest model
and a k-means coupled with multiple linear regression model) and one process-based model (the vertically re-
solved MIcrobial-MIneral Carbon Stabilization, MIMICS, model) to predict the SOC stocks of the top 30 cm
of soil in Australia. Parameters of MIMICS were optimised for different site groupings using two distinct ap-
proaches: plant functional types (MIMICS-PFT) and the most influential environmental factors (MIMICS-ENV).
All models showed good performance with respect to SOC predictions, with an R2 value greater than 0.8 during
out-of-sample validation, with random forest being the most accurate; moreover, it was found that SOC in forests
is more predictable than that in non-forest soils excluding croplands. The performance of continental-scale SOC
predictions by MIMICS-ENV is better than that by MIMICS-PFT especially in non-forest soils. Digital maps of
terrestrial SOC stocks generated using all of the models showed a similar spatial distribution, with higher values
in south-eastern and south-western Australia, but the magnitude of the estimated SOC stocks varied. The mean
ensemble estimate of SOC stocks was 30.3 t ha−1, with k-means coupled with multiple linear regression gener-
ating the highest estimate (mean SOC stocks of 38.15 t ha−1) and MIMICS-PFT generating the lowest estimate
(mean SOC stocks of 24.29 t ha−1). We suggest that enhancing process-based models to incorporate newly iden-
tified drivers that significantly influence SOC variation in different environments could be the key to reducing the
discrepancies in these estimates. Our findings underscore the considerable uncertainty in SOC estimates derived
from different modelling approaches and emphasise the importance of rigorous out-of-sample validation before
applying any one approach in Australia.

1 Introduction

Globally, the soil is the largest biogeochemically active ter-
restrial carbon pool, storing more organic carbon than plants
and the atmosphere combined (Jackson et al., 2017). The
turnover of soil organic carbon (SOC) is a key function in
plant growth, maintenance of soil water and nutrients, soil

structure stabilisation, and other biogeochemical processes
(Lefèvre et al., 2017). Soil can act as either a carbon sink
or carbon source, depending on the balance of carbon in-
put through plant litter and root exudates and output through
respiration and leaching (Terrer et al., 2021; Panchal et al.,
2022). Even a small change in SOC stocks, in any direction,
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could significantly affect the atmospheric concentration of
CO2 and, thus, climate change (Stockmann et al., 2013).

Given the importance of SOC, there is now a large and
growing interest in estimating the spatially explicit SOC
content and stocks. SOC supports critically important soil-
derived ecosystem services, and the amount of SOC indi-
cates the degree of land and soil degradation (Lorenz et
al., 2019). An SOC content below a certain limit will lead
to a decline in microbial diversity, water holding capacity
and soil productivity (Stockmann et al., 2015). Additionally,
with growing concerns about increasing anthropogenic CO2
emissions, soil carbon sequestration has emerged as a po-
tential strategy for climate change mitigation (Smith, 2016;
Rumpel et al., 2018). The protection of existing SOC and
rebuilding depleted stocks through land management are po-
tential strategies for mitigating climate change (Bossio et al.,
2020). However, effective SOC management requires accu-
rate knowledge of its existing distribution. Reliable estimates
of SOC stocks and their spatial variation serve as a reference
point for assessing how close soil is to its maximum SOC
storage capacity and its potential to sequester additional car-
bon (Six et al., 2002; Georgiou et al., 2022). Precise esti-
mation of contemporary SOC stocks also provides a base-
line map that can be used to calibrate and initialise dynamic
mechanistic models, enabling the study of how SOC will re-
spond to climate and land-use change (Minasny et al., 2013;
Viscarra Rossel et al., 2014). It is, for example, a prerequisite
for accurately predicting the future carbon–climate feedback
in Earth system models (ESMs) (Todd-Brown et al., 2013).

Accurately assessing SOC storage is challenging due to
the complexity of carbon formation and degradation pro-
cesses in space and time (Keskin et al., 2019). Soil exists as a
continuum, containing organic compounds at different stages
of decomposition (Lehmann and Kleber, 2015). Soil forma-
tion can be described by a function of climate, organisms,
relief, parent material and time (Jenny, 1941). These fac-
tors are widely used in SOC studies for digital soil mapping
(McBratney et al., 2003; Viscarra Rossel et al., 2015; Liang
et al., 2019). However, the relationship between SOC stor-
age and these driving variables is complex and spatially vari-
able (Mishra and Riley, 2015; Viscarra Rossel et al., 2019;
Adhikari et al., 2020), leading to substantial challenges and
inherent uncertainties in SOC predictions.

Mechanistic process-based models and empirical models
(including machine learning models) are two widely em-
ployed approaches used to predict SOC stocks and their spa-
tial distribution. Conventional process-based models assume
first-order kinetics for SOC decomposition, wherein the rate
of C decomposition is dependent on temperature and mois-
ture but independent of microbial biomass, while the equilib-
rium SOC stock is proportional to the carbon input and mean
residence time (Abs and Ferrière, 2020; Wang et al., 2021).
ESMs coupled with conventional SOC models cannot accu-
rately simulate the spatial pattern of contemporary soil car-
bon and show large divergence in projected SOC dynamics

under future climate change (Todd-Brown et al., 2013, 2014).
In addition to the biases introduced by errors in model param-
eters and the lack of independent model validation based on
observed time series data, the uncertainties in predicted SOC
by ESMs can also result from a lack of the explicit represen-
tation of soil microbial activities and metabolic traits (Wieder
et al., 2015; Le Neo et al., 2023). Numerous microbial mod-
els have been developed in the past few decades to improve
the model performance of SOC predictions (Chandel et al.,
2023), but these models have rarely been incorporated into
large-scale modelling frameworks due to the difficulty in-
volved with constraining parameters relating to microbial ac-
tivities and the lack of rigorous validation (Todd-Brown et
al., 2013; Luo et al., 2016). Process-based SOC models are
constructed based on our understanding of the major pro-
cesses governing SOC dynamics (e.g. carbon input, decom-
position and loss). However, the disagreement with respect
to the projections of carbon dynamics by different models
highlights the need to improve our knowledge of SOC cy-
cling (Luo et al., 2016). Machine learning models without
any process-level assumptions provide a tool to identify the
most influential controls on SOC variations. Machine learn-
ing models can represent non-linear and non-smooth rela-
tionships between the predictor and response variables as
well as interactions between different predictors (Heung et
al., 2016). Various machine learning algorithms have been
successfully used in digital soil mapping to predict high-
resolution, spatially explicit SOC concentrations or stocks
(Lamichhane et al., 2019).

Several modelling studies of soil carbon stocks have been
conducted in Australia. Wang et al. (2018a) trained boosted
regression trees and random forest models using field ob-
servations and applied the trained random forest model to
map the spatial distribution of SOC at two soil depths (0–5
and 0–30 cm) for the semi-arid rangelands of eastern Aus-
tralia. Continentally, Viscarra Rossel et al. (2014) trained
the CUBIST model, a form of piecewise linear decision
tree, using more than 5000 observations to produce a high-
resolution (90m× 90m) baseline map of the SOC stocks of
Australian terrestrial systems and their related uncertainty in
the top 30 cm of soils. Based on the baseline map, Walden et
al. (2023) derived spatially explicit estimates of Australian
SOC stocks and uncertainty that included additional data
from forests in south-eastern Australia and coastal marine
(or blue-carbon) ecosystems. The SOC content at multiple
soil depths and the associated uncertainties were also esti-
mated using different machine learning algorithms (Viscarra
Rossel et al., 2015; Wadoux et al., 2023). Moreover, the dis-
tribution of different soil carbon compositions (i.e. the partic-
ulate, mineral-associated and pyrogenic organic carbon frac-
tions) and the importance of environmental factors on their
variations were also studied using machine learning (Viscarra
Rossel et al., 2019). However, despite the progress made in
SOC modelling, significant uncertainties persist in SOC esti-
mates due to the inherent complexities of SOC variation and

SOIL, 10, 619–636, 2024 https://doi.org/10.5194/soil-10-619-2024



L. Wang et al.: An ensemble estimate of Australian soil organic carbon 621

the lack of appropriately sampled SOC observations. All of
these continental estimates were generated using empirical
modelling approaches or first-order biogeochemical models
without explicitly representing the important role of soil mi-
crobes in SOC stabilisation (Grace et al., 2006; Lee et al.,
2021). Estimates from mechanistic SOC models with the ex-
plicit representation of microbial metabolism are missing,
despite the fact that they offer the potential to better con-
strain SOC dynamics under future climate change scenarios
in a way that empirical approaches cannot.

Our primary objective in this paper is to assess the pre-
dictability of the SOC concentration (excluding cropland
soils) in Australia; generate a range of estimates of terres-
trial SOC stocks, employing both process-based and empir-
ical modelling; and examine why these estimates might dif-
fer. First, we discern the significance of environmental pre-
dictors, at both continental and biome scales. We then eval-
uate the performance of random forests, k-means with mul-
tiple linear regression and the vertically resolved MIcrobial-
MIneral Carbon Stabilization (MIMICS) model with differ-
ent parameterisation approaches. Finally, we compare the
spatial estimates of SOC stocks using these different ap-
proaches across Australia and discuss their differences and
potential application to future SOC projection.

2 Materials and methods

2.1 Model descriptions

2.1.1 Vertically resolved MIMICS

The MIMICS model (Wieder et al., 2015; Zhang et al., 2020)
explicitly considers relationships between litter quality, func-
tional trade-offs in microbial physiology and the physical
protection of microbial by-products in forming stable soil or-
ganic matter. There are two litter pools – metabolic (LITm)
and structural (LITs) litter (Fig. 1) – and the partitioning
of litter input into metabolic and structural pools is deter-
mined by the chemical properties of the litter. Litter and SOC
turnover are governed by two microbial functional types that
exhibit copiotrophic (i.e. r-selected, MICr) and oligotrophic
(i.e. K-selected, MICk) growth strategies. MICr is assumed
to have higher growth and turnover rates as well as a prefer-
ence for consuming labile litter (LITm), while MICk is char-
acterised by lower growth and turnover rates as well as a
greater competitive advantage when consuming low-quality
litter (LITs) and chemically recalcitrant SOC. SOC in MIM-
ICS is divided into three pools: physically protected (SOCp),
(bio)chemically recalcitrant (SOCc) and available (SOCa)
carbon (Fig. 1).

The decomposition of litter pools and SOC pools fol-
lows temperature-sensitive Michaelis–Menten kinetics. Mi-
crobial growth efficiency (MGE) determines the partition-
ing of carbon fluxes entering microbial biomass pools (MICr
and MICk) vs. heterotrophic respiration. Access of microbial

enzymes to available substrates depends on the soil texture.
The equations of MIMICS are from Wieder et al. (2015), ex-
cept that the density-dependent microbial turnover was in-
troduced to MIMICS to minimise an unrealistic oscillation
(Zhang et al., 2020). To better simulate carbon turnover at
different soil depths, the vertical transport of soil carbon was
introduced into MIMICS, thereby considering carbon trans-
ported through bioturbation and diffusion among adjacent
soil layers (Wang et al., 2021).

Vertically resolved MIMICS is run using a daily time step.
The soil was divided into 15 layers, each of 10 cm thickness.
All of the sites in this study are assumed to be in steady state
(i.e. no interannual variation in SOC). Historical climate, lit-
terfall input and soil properties were all assumed to be similar
to the average conditions. At each site, the initial pool frac-
tions were 0.03, 0.03, 0.14, 0.47 and 0.33 for MICr, MICk,
SOCp, SOCc and SOCa, respectively. All pools were then
spun up to finally achieve steady state, with the maximal dif-
ference in any pool size between two successive spins being
less than 0.05 %.

2.1.2 Machine learning

Two machine learning algorithms were applied to predict
SOC in this study. First, random forest (RF) is a tree-based
ensemble learning method that works by building a set of re-
gression trees and averaging results (Breiman, 2001). Within
the training procedure, the RF algorithm produces multiple
trees. Each regression tree in the forest is independently con-
structed based on a unique bootstrap sample (with replace-
ment) from the original training dataset. The response and the
predictor variables are either categorical (classification trees)
or numerical (regression trees). Bootstrap sampling makes
RF less sensitive to overfitting and allows for robust error
estimation based on the remaining test set, the so-called out-
of-bag (OOB) sample (Wiesmeier et al., 2014). We used the
“ranger” package in R (version 4.2.0) for RF computation.
We trained the RF model with different numbers (100, 200,
300, 400 and 500) of trees and observed that the model’s per-
formance remained similar regardless of the number of trees
used. The number of regression trees generated in the forest
(num.trees) was finally set as 200, and the number of pre-
dictors randomly selected at each node (mtry) was set as the
default (which was 2).

Multiple linear regression (MLR) is widely used in SOC
studies, but it has been found to be less effective than ma-
chine learning algorithms (Lamichhane et al., 2019). Here,
instead of applying MLR directly with all environmental fac-
tors as predictors, our approach involved a preliminary step
in which we partitioned all observations into distinct clusters
using k-means, an unsupervised machine learning algorithm.
k-means aims to divide the data into a predefined number of
clusters (k), with the objective of maximising the similarity
among data within each cluster. The underlying assumption
here was that sites sharing similar environmental conditions
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Figure 1. SOC pools and fluxes represented in MIMICS (adapted from Wieder et al., 2015). Litter inputs are partitioned into metabolic
and structural litter pools (LITm and LITs, respectively) based on litter quality (fmet). Decomposition of litter and the available SOC pool
(SOCa) are governed by temperature-sensitive Michaelis–Menten kinetics (Vmax, maximum reaction velocity;Km, half saturation constant),
shown by red lines. Microbial growth efficiency (MGE) determines the partitioning of C fluxes entering the microbial biomass pools vs.
heterotrophic respiration. Turnover of microbial biomass (τ , blue) depends on microbial functional types (MICr and MICk) and is partitioned
into available, physically protected and chemically recalcitrant SOC pools (SOCa, SOCp and SOCc, respectively).

would exhibit a comparable SOC concentration. For cases in
which certain clusters had fewer observations than 5 times
the number of predictors, we augmented these clusters by in-
corporating observations from other clusters. This augmen-
tation process was guided by the Euclidean distance between
the observation and the cluster centre, ensuring a more ro-
bust construction of the linear regression model. To deter-
mine the number of clusters, we applied the coupled k-means
and MLR with a varying number of clusters. The selection of
the optimal number of clusters was based on the criterion of
producing the smallest root-mean-square error during inde-
pendent out-of-sample validation.

2.2 Relative importance of environmental variables for
SOC prediction

RF-based measures of variable importance have gained
widespread popularity as tools for evaluating the contribu-
tions made by predictor variables within a fitted random for-
est model (Debeer and Strobl, 2020). In the context of this
study, we employed permutation variable importance (PVI)
within the random forest framework to gauge the significance
of predictors (see Sect. 2.4) in predicting the SOC concentra-
tion.

The PVI entails measuring the reduction in an RF model’s
performance score upon random shuffling of a single-
variable values. By doing so, the inherent relationship be-
tween the variable and the SOC concentration is disrupted.
Consequently, the disparity in prediction accuracy observed
in an RF model before and after such shuffling serves as
a quantitative representation of the significance of the par-
ticular predictor in predicting the SOC concentration. The
greater the importance of the predictor, the higher its corre-
sponding PVI value becomes.

2.3 Parameter optimisation

MIMICS parameters were derived from Zhang et al. (2020)
and Wang et al. (2021), except that five parameters (Ta-
ble 1) which directly control the organic carbon decompo-
sition were optimised. An effective global optimisation algo-
rithm called the shuffled complex evolution (SCE-UA, ver-
sion 2.2) method (Duan et al., 1993) was applied for param-
eter optimisation by minimising the residual sum of squares
between the observed and modelled values.

Vertically resolved MIMICS simulated the SOC concen-
tration for 15 soil layers with a uniform layer thickness of
10 cm. As observations only provide one measurement for
the top 30 cm of soil, we computed the average of the mod-
elled values spanning the 0–10, 10–20 and 20–30 cm soil
layers. This average was then adopted as the modelled SOC
concentration for top 30 cm of soil, serving as the basis for
evaluating the difference between observations and simula-
tions.

Parameters in MIMICS were optimised for different
groups divided based on two approaches. The first approach
involved categorising all observations into four groups based
on the plant functional type (PFT). The second approach used
the most influential abiotic variables as predictors (as out-
lined in Sect. 2.2) and divided all observations into six clus-
ters using the k-means algorithm. The determination of the
optimal number of clusters was achieved through the min-
imisation of the sum of the within-cluster sum of squares of
all clusters (WCSSE), a process facilitated by the “ClusterR”
package in R (version 4.2.0). This clustering aimed to en-
sure the highest possible similarity among the environmental
factors within each cluster. It was anticipated that the SOC
ranges within each cluster would be narrow due to the high
similarity of the environmental predictors.
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Table 1. The optimised model parameters (dimensionless) and their value range.

Parameter Definition Range

av A scaling factor for Vmax 0–30
ak A scaling factor for Km 0-20
xdesorp A scaling factor for the SOC desorption rate 0–3
xbeta An exponent of the biomass-density-dependent mortality rate of microbes 1.05–2
xdiffsoc A scaling factor for the SOC diffusion coefficient in soil 0–30

2.4 Data

2.4.1 Predictors of spatial variations in the observed
SOC concentration

MIMICS requires the gridded mean annual temperature
(MAT), carbon input and clay content as driving variables
for a spatial simulation. The gridded mean annual precipita-
tion (MAP) and vegetation types were also used during cal-
ibration and to aid in understanding the drivers and spatial
variability in SOC. Details on the gridded data can be found
in Table 2.

Gridded daily maximum temperature, minimum tempera-
ture and precipitation at 0.05° resolution were obtained from
the SILO database (Jeffrey et al., 2001) of Australian climate
data. Mean daily temperature was approximated as the aver-
age of the maximum and minimum daily temperature. MAT
was calculated from the mean daily temperature from 1991 to
2020, and MAP was calculated from the daily precipitation
from 1991 to 2020.

Carbon input was represented by the net primary produc-
tion (NPP). The gridded mean annual NPP at 500 m was cal-
culated based on the annual NPP from 2001 to 2020 obtained
from MODIS (MOD17A3HGF V6.1) (Running and Zhao,
2021). NPP was partitioned into the aboveground and be-
lowground parts by multiplying by the root-to-shoot ratio for
different vegetation types (Mokany et al., 2006). Here, we
did not account for the faction of NPP that is appropriated by
human activities.

The distribution of vegetation types was obtained from
the National Vegetation Information System (NVIS, ver-
sion 6.0, https://www.dcceew.gov.au/environment/land/
native-vegetation/national-vegetation-information-system,
last access: 1 April 2024). Pixels of non-vegetated regions
were removed, and 28 vegetation types from NVIS were
aggregated to just 4 PFTs: forest, woodland, shrubland and
grassland.

Soil bulk density and clay content were obtained from the
maps of Soil and Landscape Grid National Soil Attributes
(SLGA, Release 2; Grundy et al., 2015; Viscarra Rossel et
al., 2015). Soil properties were predicted based on machine
learning at depths of 0–5, 5–15, 15–30, 30–60, 60–100 and
100–200 cm in SLGA. Bulk density and clay content were
estimated for the top 30 cm of soil as a weighted average of
first three layers in the SLGA.

The initial spatial resolution of the gridded data was main-
tained when extracting the required environmental factors for
each SOC observation. All data were then resampled to a
0.05° resolution using bilinear interpolation for the estima-
tion of terrestrial SOC stocks at a continental scale.

2.4.2 Soil organic carbon observations

SOC observations for the top 30 cm of soil in Australia
were collected from two datasets. The first dataset is de-
scribed in Viscarra Rossel et al. (2014) and Viscarra Rossel
et al. (2019). We removed the observations collected from
croplands based on the land-use record in the dataset as well
as observations from unvegetated regions based on the NVIS
vegetation map (see above). A total of 1070 site observa-
tions, including only 38 from forest soils, were retained. SOC
stocks were reported in tonnes per hectare (t ha−1). To better
represent the SOC distribution in forests, we obtained ad-
ditional forest SOC observations from a second dataset, the
Biomes of Australian Soil Environments (BASE) described
in Bissett et al. (2016). Here, SOC (%) was reported for 0–
10 and 20–30 cm. We estimated SOC for the 0–30 cm soil
depth following the method described in Viscarra Rossel et
al. (2014).

To compare the observations with MIMICS outputs, we
then converted both simulated SOC (mg cm−3) and observed
SOC (t ha−1) in the first dataset (Viscarra Rossel et al., 2014)
to the SOC concentration (g C kg soil−1) using the spatially
explicit soil bulk density (BD) from the SLGA. The unit con-
version will not affect the results of MIMICS. Soil clay con-
tent is extracted from the SLGA.

The spatial distribution of SOC observations from differ-
ent PFTs is shown in Fig. 2a. The SOC concentration in
the top 30 cm is positively skewed, ranging from 1.36 to
59.73 g C kg soil−1 with a mean value of 9.97 g C kg soil−1

and a median value of 6.11 g C kg soil−1. The SOC concen-
trations in grassland, shrubland and woodland show similar
distribution patterns (Fig. 2b), whereas the SOC concentra-
tion in forests is more variable, with a standard deviation of
15.92 g C kg soil−1.
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Table 2. Information on the gridded data used in this study.

Source Spatial scale Temporal scale Unit Time period

Maximum temperature SILO ∼ 5 km daily °C 1991–2020
Minimum temperature SILO ∼ 5 km daily °C 1991–2020
Precipitation SILO ∼ 5 km daily mm 1991–2020
NPP MODIS 500 m annual g C m−2 yr−1 2001–2020
Vegetation types NVIS 100 m – – –
Soil bulk density SLGA ∼ 90 m – kg m−3 –
Soil clay content SLGA ∼ 90 m – % –

Figure 2. (a) Spatial distribution of the 1285 SOC observations used in this study and the PFTs that they belong to; (b) box plots of the SOC
concentration distributions for each PFT. For box plots, centre lines represent the median value, upper and lower box boundaries represent
the respective third and first quartiles, and the whiskers extend to the smallest and largest values within 1.5 times the interquartile range.

2.5 Model evaluation

For machine learning models, 70 % of the observations were
randomly selected as training data to train the models, while
the remaining 30 % of observations were used as test data to
validate the predictions of the SOC concentration. For verti-
cally resolved MIMICS, parameters were optimised for each
PFT or environmental group (see Sect. 2.3 above); again, we
randomly selected 70 % of observations in each group to train
the model, while the remaining 30 % of observations were
used for validation. To cross-validate, the procedure was re-
peated 10 times.

The performance of models was evaluated using four met-
rics: the mean absolute error (MAE) indicates how close the
average predictions are to average observations; the root-
mean-square error (RMSE) measures the overall accuracy,
combining the mean, standard deviation differences (across
sites) and (spatial) correlation; the coefficient of determi-
nation (R2) measures the percentage of variation explained
by the model; and Lin’s concordance correlation coefficient
(LCCC; Lawrence and Lin, 1989) measures the level of

agreement between predictions and observations following
the 1 : 1 line. A good model will have an MAE and RMSE
close to 0 and an R2 and LCCC close to 1.

2.6 Estimation of terrestrial SOC stocks

SOC concentrations were used to train the models, and we
then estimated terrestrial SOC stocks and their continental-
scale spatial distribution in the top 30 cm of soil utilis-
ing the four models validated within this study. The SOC
stock (t ha−1) is calculated using the SOC concentration
(g C kg soil−1), bulk density (BD, kg m−3) and soil depth
(m):

SOCstock = SOCconcentration×BD× depth/100. (1)

In the cases of MIMICS-PFT and MIMICS-ENV, the ini-
tial step involved grouping all pixels into four distinct plant
functional groups or six environmental clusters. As cross-
validation was performed, the machine learning and process-
based models were evaluated using test data, and the mod-
els with optimal performance were subsequently employed
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at each pixel to estimate the terrestrial SOC stocks. The map
of the ensemble estimate of SOC stocks was produced as the
average of the four model estimates at each pixel.

3 Results

3.1 Relative importance of predictors on SOC variation

Using the PVI in random forest, we identified the signifi-
cance of environmental factors with respect to predicting the
SOC concentration. At the continental scale, the soil bulk
density contributes most to the prediction of the SOC con-
centration, followed by the MAT, NPP and MAP (Fig. 3).
The soil clay content and PFT exhibit relatively less signifi-
cance in this regard.

The relative predictor importance for forests and grass-
lands aligns with the importance at the continental scale. In
shrubland and woodland, the NPP and MAP emerge as the
pivotal factors. Collectively, across both continental and re-
gional scales, the soil bulk density, MAT and MAP are the
three most influential abiotic factors.

3.2 Data clustering based on environmental factors

To develop the calibration groups for MIMICS-ENV, we par-
titioned the top three most important abiotic factors, which
are soil bulk density, MAT and MAP, into six distinct clus-
ters using k-means (see Sect. 2.3). The resulting characteris-
tics and the spatial distribution of SOC belonging to these six
clusters are illustrated in Fig. 4.

Notably, a substantial majority of forests were assigned to
clusters 2 and 6 (Fig. 4a), while woodland, shrubland and
grassland observations were distributed across the remain-
ing four clusters. Among these clusters, cluster 5 exhibits the
lowest SOC concentration, while the SOC of clusters 1 and
3 displays a comparable pattern but spread across different
biomes. Conversely, the distribution of the SOC concentra-
tion in clusters 2, 4 and 6 shows more pronounced variability
(Fig. 4c).

3.3 Evaluation of model performance

All models employed in this study (RF, k-means and MLR,
MIMICS-PFT, and MIMICS-ENV) predicted the SOC con-
centration well for both the training data and the test data
(Fig. 5). As anticipated, performance for both process-based
models and machine learning models degrade using out-of-
sample data vs. in-sample training or calibration data. When
using test data, the mean R2 value for all models ranges from
0.82 to 0.94, the mean LCCC ranges from 0.90 to 0.97, the
mean RMSE ranges from 2.88 to 4.51 g C kg soil−1 and the
mean MAE ranges from 1.55 to 2.57 g C kg soil−1.

The machine learning models outperformed MIMICS with
respect to predicting the SOC concentration, regardless of
the optimisation approach taken. Particularly, the RF model

demonstrated the most accurate predictions, characterised by
higher R2 and LCCC values and lower RMSE and MAE val-
ues for both the training and test data. While MIMICS-ENV
displayed performance similar to that of MIMICS-PFT with
respect to the SOC concentration predictions based on the
RMSE and MAE, the former exhibited slightly superior me-
dian R2 and LCCC values, although with a higher variability
(Fig. 5).

The SOC concentration in forest soil exhibited signifi-
cantly higher predictability than that in non-forest (wood-
land, shrubland and grassland) soil, as evidenced by a higher
R2 (ranging from 0.58 to 0.91) and LCCC (ranging from
0.75 to 0.95) for test data (Fig. 6). Machine learning mod-
els surpassed MIMICS with respect to predicting the SOC
concentration for both forest and non-forest soils. Notably,
MIMICS-ENV outperformed MIMICS-PFT with respect to
SOC concentration predictions, particularly in non-forest
soils.

3.4 Estimations of terrestrial SOC stocks

Using the best-fitted models after cross-validation (see
Sect. 2.6 for details), we estimated the total SOC stock in
the top 30 cm of soil for the whole Australian continent at a
spatial resolution of 0.05°× 0.05°. The optimised parameters
used for MIMICS-PFT and MIMICS-ENV at the continental
scale are shown in Table 3.

Descriptive statistics of predicted terrestrial SOC stocks at
0–30 cm soil depth are shown in Table 4. Forests have the
largest mean SOC stocks, ranging from 70.3 to 113.9 t ha−1,
according to all models, whereas shrubland is estimated
to have the lowest mean SOC stocks. The distributions of
predicted continental SOC stocks by all models are posi-
tively skewed, with most estimated SOC stocks being less
than 50 t ha−1 (Fig. 7a); moreover, SOC stocks at peak
density predicted by MIMICS-ENV and MIMICS-PFT are
smaller than those predicted by the two machine learning ap-
proaches.

As expected, all models consistently projected larger SOC
stocks in the south-eastern region, the south-western cor-
ner and Tasmania, whereas they consistently indicated lower
SOC stocks in central and western Australia (Fig. 7b).
Among the models, k-means coupled with multiple linear re-
gression consistently provided the highest SOC estimations
across all vegetation types, whereas the MIMICS-PFT model
consistently yielded the lowest mean SOC stocks.

The ensemble estimate of SOC stocks (Fig. 7c) shows
a similar distribution pattern to that generated by a single
model. The SOC stocks of the ensemble range from 10.0 to
180.4 t ha−1 with an average value of 30.3 t ha−1. The co-
efficient of variation, calculated as the ratio of the standard
deviation to the mean, across the four estimates (Fig. 7d) is
positively correlated with the ensemble mean estimate. Thus,
soils with higher SOC stocks exhibit greater variability in
the SOC predictions among different models. Note also that
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Figure 3. Importance of predictors with respect to the SOC concentration for different PFTs.

Figure 4. (a) The fraction of different PFTs in each cluster divided based on environmental factors; (b) the spatial distribution of the SOC
observations from different environmental clusters; (c) a density plot of the observed SOC concentration for different clusters.

the variability in estimates tends to be smaller in areas with
denser numbers of observations (Fig. 7d).

4 Discussion

4.1 Relative importance of predictors with respect to
SOC variation

Extensive research has been conducted to discern the factors
that govern SOC concentrations or stocks. Among the com-
monly employed predictors for SOC spatial variations, cli-
mate, organisms, topography, parent material and soil proper-
ties are prominent (Wiesmeier et al., 2019). Within this study,
we conducted a comparative assessment of the significance

of key variables, namely, MAT, MAP, NPP, soil clay content
and bulk density, in driving variations in SOC in Australia.
Although the number of predictors utilised in our approach
is fewer than that employed in most digital mapping method-
ologies, our models show good performance with respect to
predicting SOC in Australia (Figs. 5 and 6), and the strength
of our technique lies in the potential for a more direct com-
parison between empirical and process-based models.

Consistent with the results of Hobley et al. (2015) on
soils from eastern Australia, this study identified soil bulk
density as an important predictor of the SOC concentration
at the continental scale (Fig. 3). However, the relationship
between soil bulk density and soil carbon concentration is
largely interactive (Murphy, 2015). Higher concentrations of
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Figure 5. Performance metrics of the SOC concentration predictions. The units for MAE and RMSE are grams of carbon per kilogram of
soil (g C kg soil−1). The centre line represents the median value, the upper and lower box boundaries represent the respective third and first
quartiles of metrics from cross-validation, and the whiskers extend to the smallest and largest values within 1.5 times the interquartile range.

Figure 6. Performance metrics of the SOC concentration predictions for forest and non-forest (woodland, shrubland and grassland) soils in
test (out-of-sample) data. The units for MAE and RMSE are grams of carbon per kilogram of soil (g C kg soil−1). The centre line represents
the median value, the upper and lower box boundaries represent the respective third and first quartiles of metrics from cross-validation, and
the whiskers extend to the smallest and largest values within 1.5 times the interquartile range.
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Table 3. Optimised parameter ranges of MIMICS for cross-validation. Values in parentheses were used for estimating SOC stocks at the
continental scale. The reader is referred to Table 1 for further explanations of each parameter.

Model PFT/Cluster av ak xdesorp xbeta xdiffsoc

MIMICS- Grassland 4.36–18.11 4.42–19.11 1.90–3.0 1.06–1.42 16.21–29.90
PFT (5.45) (5.62) (2.97) (1.06) (29.3)

Shrubland 12.15–17.91 14.46–18.87 1.54–2.92 1.14–1.27 20.21–29.96
(12.46) (16.80) (2.58) (1.24) (29.73)

Woodland 8.41–17.01 9.35–16.99 1.12–1.23 1.12–1.23 20.17–29.96
(10.92) (12.73) (1.10) (1.18) (23.91)

Forest 3.15–8.56 12.61–19.69 0.39–3.0 1.42–1.88 11.55–27.70
(4.70) (13.53) (1.36) (1.35) (10.20)

MIMICS- Cluster 1 5.23–13.82 6.08–17.80 1.62–2.85 1.07–1.20 0.00–29.81
ENV (10.189) (11.93) (1.84) (1.07) (28.80)

Cluster 2 3.56–10.76 7.36–18.24 1.01–2.94 1.05–1.07 3.61–12.75
(7.60) (15.70) (2.07) (1.05) (6.91)

Cluster 3 8.31–10.52 15.98–19.91 1.84–2.83 1.36–1.52 10.83–29.45
(8.48) (19.66) (2.25) (1.52) (26.25)

Cluster 4 2.47–5.52 6.44–16.80 0.54–1.78 1.21–1.74 14.75–28.91
(5.10) (13.52) (0.92) (1.42) (20.37)

Cluster 5 12.24–20.57 10.90–17.56 2.89–3.0 1.05–1.06 25.32–29.83
(19.55) (17.56) (2.98) (1.05) (25.75)

Cluster 6 3.25–7.18 7.73–18.23 1.91–2.97 1.05–1.09 6.19–28.57
(6.40) (15.86) (2.73) (1.09) (15.47)

soil organic matter facilitate soil aggregation formation and
increase soil porosity, which results in lower bulk density.
Meanwhile, a soil with a reduced bulk density exhibits higher
permeability for water and oxygen, which enhances plant
root growth and SOC dynamics. Physically, the bulk density
of organic matter is less than 1 g cm−3, much lower than soil
mineral solids with a density of 2.66 g cm−3. Therefore, soils
of lower bulk density usually have a higher SOC concentra-
tion (Marshall et al., 1996).

Across the Australian continent, MAT emerges as the sec-
ond most influential factor governing SOC variations, fol-
lowed by NPP, MAP and clay content. This sequence of sig-
nificance diverges from the findings of Walden et al. (2023),
who observed the following order of importance at the con-
tinental scale in Australia: NPP > clay content > MAP >
MAT. The number of predictors used in their study was much
higher than that in our study, which may have affected the
contribution of given predictors to the SOC variation (Guo
et al., 2019). However, this discrepancy might also be at-
tributable to the utilisation of observations encompassing
both terrestrial and blue-carbon ecosystems in their study.
Clay mainly emerges as key driver in groups in which aquatic
plants (e.g. seagrass and tidal marsh) appear. The more ex-
tensive dataset encompassing the eastern coastline, charac-
terised by greater variability and abundance of NPP input,
potentially elevates the NPP to a dominant role in influenc-
ing SOC variations within their study.

For SOC in different vegetation types (Fig. 3), soil bulk
density and MAT are more important than other factors in

forests, and all factors except clay content showed similar
importance with respect to predicting the SOC concentration
in grasslands. The NPP and MAP dominate the SOC vari-
ations in woodlands and shrublands. Climate conditions, as
represented by MAT and MAP, exert their impact on SOC
in all vegetation types. It was proposed that the primary cli-
matic determinant of SOC variation hinges on the primary
constraint affecting SOC production and turnover (Hobley
et al., 2016). In this study, most shrublands and woodlands
are distributed in arid and semi-arid regions characterised
by limited precipitation, which leads to water stress in the
surface soil, limiting plant productivity and reducing soil C
input (Hobley et al., 2015). Consequently, MAP and NPP
exhibited a relatively higher influence on SOC variations in
soils under these vegetation types. In contrast, forest SOC
observations are mainly distributed in areas with relatively
lower temperatures; therefore, these regions experience con-
strained microbial metabolism, leading to reduced decompo-
sition rates and high SOC accumulation (Wynn et al., 2006).
Thus, MAT emerges as a key factor influencing SOC vari-
ations in forests. Furthermore, it is noteworthy that the soil
bulk density plays a crucial role in determining the SOC
distribution within forests, where it is found to be signif-
icantly lower compared with other vegetation types. This
lower soil bulk density likely improves oxygen availability
to soil microbial communities and facilitates the formation of
microaggregates to enhance the preservation of SOC within
the soil matrix (Bronick and Lal, 2005). Consequently, it ef-
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Figure 7. Estimated Australian terrestrial SOC stocks (t ha−1) for the top 30 cm of soil and the ensemble statistical characteristics: (a) density
plot of estimated terrestrial SOC stocks by all models, noting that only stocks less than 200 t ha−1 are shown for better comparison of the
distribution; (b) estimated SOC stocks by each model; (c) estimated SOC stocks of the ensemble; (d) coefficient of variation in the ensemble
estimates of SOC stocks. Grey points represent the locations of SOC observations.

fectively contributes to elevated SOC concentration levels in
forested areas.

PFT is the only categorical predictor of the SOC concen-
tration in this study. SOC is mainly derived from plant C in-
put through aboveground and belowground tissues, and SOC
turnover and storage are influenced by plant traits, such as
plant growth rate and chemical and physical composition (De
Deyn et al., 2008; Faucon et al., 2017). With the shared rep-
resentation of similar plant traits, the PFT is widely used in
process-based models (Poulter et al., 2015; Famiglietti et al.,
2023). It was found that the vertical distribution of SOC is
highly related to the PFT due to differences in root distribu-
tion and aboveground and belowground allocation (Jobbágy
and Jackson, 2000). However, our study is limited by the ab-
sence of SOC observations at multiple soil depths, restrict-
ing the analysis to the spatial distribution of SOC at 30 cm
soil depth. The influence of the PFT on the SOC concen-
tration at this particular depth appears to be relatively in-

significant (Fig. 3), casting doubt on the effectiveness of op-
timising parameters of process-based models for individual
PFTs (Cranko Page et al., 2024). Considering this, employ-
ing the top three influential abiotic predictors, soil bulk den-
sity, MAT and MAP, we partitioned all observations into six
distinct clusters using k-means. It was anticipated that the
SOC ranges within each cluster would be narrow due to the
high similarity of these three predictors within each group.
However, the distribution of SOC in clusters 2, 4 and 6 exhib-
ited considerable variability (Fig. 4). Given that these clusters
are predominantly composed of forests, it becomes apparent
that these three abiotic factors alone are insufficient to fully
characterise the intricacies of the forest SOC concentration.
It was found that elevation and evapotranspiration also drive
the variation in the forest SOC in Australia (Walden et al.,
2023); thus, taking these factors into account might poten-
tially increase the predictability of forest SOC.

https://doi.org/10.5194/soil-10-619-2024 SOIL, 10, 619–636, 2024



630 L. Wang et al.: An ensemble estimate of Australian soil organic carbon

Table 4. Descriptive statistics of estimated terrestrial SOC stocks (t ha−1) at 0–30 cm soil depth. Min and Max are the respective minimum
and maximum values, while 1st Qu and 3rd Qu represent the respective first and third quartiles.

PFT Min 1st Qu Median Mean 3rd Qu Max

k-means and MLR grassland 4.2 17.9 21.2 41.5 42.5 601.1
shrubland 7.2 16.4 19.3 23.6 24.4 472.2
woodland 7.1 20.1 26.1 33.3 33.7 483.1
forest 18.0 51.3 95.2 113.9 153.4 474.0
all 4.2 18.1 23.6 38.2 36.7 601.1

Random Forest grassland 10.4 18.5 26.0 30.4 37.2 125.3
shrubland 10.3 17.0 19.6 21.4 24.4 104.4
woodland 10.5 20.3 25.8 28.2 32.4 122.1
forest 29.3 55.0 82.3 78.4 97.0 161.7
all 10.3 18.9 25.0 29.8 33.7 161.7

MIMICS-PFT grassland 10.8 16.4 24.1 25.1 33.3 58.7
shrubland 6.5 12.2 15.5 16.5 20.6 56.5
woodland 7.8 17.4 21.2 22.1 25.9 61.4
forest 17.9 44.5 77.4 70.3 88.5 109.9
all 6.5 15.7 21.2 24.3 28.9 109.9

MIMICS-ENV grassland 6.8 13.7 18.7 29.9 27.6 124.0
shrubland 6.7 13.4 16.7 18.3 20.2 131.9
woodland 8.1 18.0 24.0 27.5 28.0 131.6
forest 15.8 35.7 90.4 79.4 106.5 134.1
all 6.7 15.0 20.2 28.9 27.5 134.1

Ensemble grassland 11.4 17.1 21.1 31.7 36.3 180.4
shrubland 10.0 15.2 17.3 20.0 21.7 170.4
woodland 11.0 18.8 24.4 27.8 30.0 168.0
forest 22.0 46.8 93.1 85.5 112.7 166.3
all 10.0 17.2 22.2 30.3 31.5 180.4

4.2 Model evaluation and comparison with other studies

Although the predictors used for machine learning models
are not exactly same as the inputs of MIMICS, the missing
factors (e.g. MAP) were used for parameter optimisation of
MIMICS-ENV, making the predictions dependent on simi-
lar information and, therefore, comparable to some extent.
Moreover, our study presented clear evaluation metrics for
out-of-sample validation, enabling a more robust assessment
of model performance when applied to new datasets.

Based on the performance metrics of test data, the ma-
chine learning models performed remarkably well (Fig. 5).
The R2 values suggested that both machine learning mod-
els can explain more than 90 % of SOC variability across
sites, and random forest did the best job, with the greatest R2

and LCCC values and the lowest MAE and RMSE values.
Random forest algorithms have been widely adopted for pre-
dicting spatial–temporal SOC dynamics and have produced
moderately good performance both regionally and globally.
For example, Wang et al. (2022) applied random forest to es-
timate SOC stocks in south-eastern Australia and explained
69 % of the variation in the current SOC stocks. Nyaupane
et al. (2023) trained a random forest model using global

SOC observations and explained 61 % of SOC variation. The
good performance of random forest might be attributed to
a reduced susceptibility to overfitting and a better capacity
to manage the hierarchical non-linear relationships that ex-
ist between SOC and environmental predictors (Wang et al.,
2018b). Other machine learning methods have been applied
to predict continental SOC stocks in Australia. For example,
Walden et al. (2023) trained the CUBIST regression tree al-
gorithm to predict SOC stocks for the top 30 cm of soil using
the Harmonized datasets. The mean LCCC and RMSE val-
ues for out-of-sample validation in their study were 0.78 and
0.20, respectively, when log10-transformed SOC (t ha−1) val-
ues were used. Wadoux et al. (2023) applied quantile regres-
sion forest to predict SOC stocks at multiple soil depths. The
prediction accuracy decreased dramatically for deeper depth
intervals, with the greatest R2 value (0.53) being found at
0–5 cm soil depth. The better results in this study may be
attributed to the removal of cropland ecosystems, which are
clearly highly managed and, therefore, less predictable. Agri-
cultural practices greatly affect SOC stocks in Australia and
add the complexity to the relationship between SOC and en-
vironmental factors (Luo et al., 2010). Models using environ-
mental predictors without representation of land-use man-
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agement are unlikely to be able to fully capture the SOC dy-
namics in croplands (Abramoff et al., 2022).

Although MIMICS was not as accurate as machine learn-
ing models with respect to simulating spatial variation in the
SOC concentration in Australia, it did well at the continental
scale with a mean R2 value of 0.82 and 0.84 for MIMICS-
PFT and MIMICS-ENV, respectively (Fig. 5); these R2 val-
ues are much greater than the values (< 0.4) obtained by
Abramoff et al. (2022), who applied a different microbial
explicit model to the Australian SOC dataset. Georgiou et
al. (2021) found that there was a mismatch between observa-
tions and MIMICS regarding the role of different environ-
mental controls on SOC variability at the global scale. In
their study, NPP and MAT had the most explanatory power
for SOC stocks from MIMICS, while clay content had the
most explanatory power for global SOC observations, which
limits the predictability of SOC using MIMICS in their study.
However, in our study, NPP and MAT (rather than clay con-
tent) played a greater role in observed SOC variations, per-
haps contributing to better predictive performance for MIM-
ICS in Australia. It also means that SOC estimates in our
study are highly sensitive to the estimates of NPP. In this
study, we used the MODIS NPP product (Running and Zhao,
2021) and did not account for the loss of NPP due to human
activities, which may likely influence the optimised estimates
of some model parameters, and the uncertainties in the sim-
ulated SOC concentration. Future studies would ideally use
multiple NPP products to quantify the impacts of NPP uncer-
tainties on simulating SOC variation in Australia.

The modest performance of the MIMICS process-based
model relative to machine learning models could potentially
be attributed to the absence of the explicit representation of
MAP. The augmentation of MAP within parameter optimisa-
tion in MIMICS-ENV did allow for improved performance
compared with MIMICS-PFT, particularly within non-forest
regions where the importance of MAP rivals or surpasses
that of temperature. Precipitation is a determinant of plant
productivity, especially in arid and semi-arid regions. Fur-
thermore, arid regions with limited precipitation are charac-
terised by a lower weathering rate, limiting the formation of
mineral-associated soil carbon (Doetterl et al., 2015). Hence,
we assume that introducing the effect of moisture to MIM-
ICS could contribute to a more accurate prediction of SOC,
compared with just taking MAP into account for parameteri-
sation, especially in arid and semi-arid regions.

All models produced lower MAE and RMSE values for
non-forest SOC but higher R2 and LCCC values for forest
SOC (Fig. 6). SOC in forests is more abundant and variable
compared with SOC in other vegetation types, even when cli-
mate conditions are similar, which leads to greater absolute
error in the estimated forest SOC than in other vegetation
types. However, in terms of the consistency and concordance
between the pattern of observations and predictions, all mod-
els show a higher ability to predict SOC in forests. Forests,
given that they are less-perturbed ecosystems, might show

greater SOC predictability due to the reduced influence of di-
rect anthropogenic disturbances. Grasslands, shrublands and
woodlands, predominantly situated in Australian rangelands,
may experience extensive grazing and land management. Pri-
marily, grazing reduces soil carbon input via the consump-
tion of aboveground biomass and accelerates SOC decom-
position through the input of nutrient-enriched animal waste.
This introduces additional uncertainties to our modelled SOC
estimates, as C input is solely represented by NPP without
accounting for the impact of grazing and land management.
Moreover, the cascading effects of grazing extend to poten-
tial alterations to plant composition and structural attributes,
inducing consequential shifts in litter properties that modu-
late soil carbon decomposition kinetics (Lunt et al., 2007;
Bai and Cotrufo, 2022). The disturbances triggered by graz-
ing manifest in soil carbon pools, leading to a state of dis-
equilibrium rather than adhering to the assumption of SOC
convergence toward equilibrium, as embraced in this study’s
framework. Notably, forests, as relatively undisturbed natu-
ral ecosystems, demonstrate a better coherence with the equi-
librium assumption, rendering their SOC more amenable to
prediction through environmental drivers.

4.3 Spatial prediction of SOC stocks in Australia

We produced gridded SOC stocks across Australia using the
models validated in this study and an ensemble estimate as
the average of four models (Fig. 7). Among the models, k-
means coupled with multiple linear regression produced the
largest mean SOC stocks at both the continental scale and
for all vegetation types. In contrast, RF and MIMICS, with
different parameterisation approaches, produced lower SOC
stock estimations (Table 4). The mean terrestrial SOC stocks
estimated by random forest and MIMICS are comparable
with that estimated by the Australian baseline map, which
was generated using a machine learning algorithm, reporting
mean SOC stocks of 29.7 t ha−1 with 95 % confidence limits
of 22.6 and 37.9 t ha−1 (Viscarra Rossel et al., 2014). How-
ever, SOC stocks might be underestimated by these meth-
ods because of the scarcity of data from the most produc-
tive temperate forest in both the baseline map (Bennett et
al., 2020) and in our study. The parameter optimisation pro-
cess of MIMICS and the training process of random forest
are greatly affected by the data used to train the model. Most
SOC observations in this study were sourced from arid and
semi-arid regions that are characterised by a relatively low
SOC content. As a result, the models’ ability to predict SOC
stocks beyond the observed data range is somewhat con-
strained. PFT was found to be less important than other envi-
ronmental factors in driving spatial SOC variations (Fig. 3);
thus, it was perhaps not surprising that applying parameters
optimised for each PFT to the regions with the same PFT but
broader climate conditions led to inferior results compared
with applying parameters optimised for each environmental
group.
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The utilisation of linear regression in the k-means and
MLR model generated SOC estimates beyond the range of
observations, particularly in eastern Australia where environ-
mental conditions deviate from the training data. The mean
SOC stocks estimated by k-means and MLR (38.2 t ha−1) are
higher than those of the other models employed in this study,
and they align closely with the mean value of 36.2 t ha−1 re-
ported by Walden et al. (2023), who updated the Australian
baseline SOC map (Viscarra Rossel et al., 2014) by incorpo-
rating additional SOC observations from forests and coastal
marine ecosystems. However, caution is required when inter-
preting extreme values derived from the k-means and MLR
model, such as the instance of grassland SOC stocks reaching
601 t ha−1 (Table 4). These values raise concerns about the
reliability of this approach when undertaking out-of-sample
extrapolation. Although there is a positive relationship be-
tween NPP and SOC observations in this study, SOC accu-
mulation cannot continuously increase linearly in the regions
where environmental conditions seem highly conducive to
SOC formation. The greater amount of carbon input in east-
ern Australia might trigger the acceleration of microbial de-
composition because of a priming effect, thereby leading to
a decreased accumulation of SOC stocks (Ren et al., 2022).
The existence of SOC saturation also implies that SOC can-
not be accumulated without limit (Georgiou et al., 2022; Vis-
carra Rossel et al., 2023). In light of these complexities, ap-
plying linear regression to predict SOC stocks, especially un-
der extreme environmental conditions, should be undertaken
with care.

Continentally, higher SOC stocks were estimated for
the south-western corner and south-eastern region of Aus-
tralia (Fig. 7), aligning with other SOC maps for Australia
(Wadoux et al., 2023; Walden et al., 2023). These regions
are characterised by lower temperature and higher precipita-
tion; therefore, high SOC accumulation appeared because of
a high NPP carbon input and a low decomposition rate. How-
ever, the high variability in the SOC estimates among the
four models in these regions should be highlighted (Fig. 7d),
along with the difference in magnitudes between the esti-
mates in this study and other Australian SOC products (Vis-
carra Rossel et al., 2014; Walden et al., 2023). Despite in-
herent differences in model structures, the scarcity of obser-
vations in these regions likely contributes to the large uncer-
tainties in SOC estimates. Forests have the largest mean SOC
stocks, ranging from 70.3 to 113.9 t ha−1, estimated by the
four models in this study. Around 75 % of the forest SOC is
from soil under eucalypt open forest, and mean SOC stocks
under this type of forest were estimated to be 87.5 t ha−1

(95 % confidence interval of 63.8–119.6 t ha−1) (Walden et
al., 2023). Shrublands are estimated to have the lowest mean
SOC stocks, and more than 90 % of shrub SOC observations
are from soil under Acacia shrubland and chenopod shrub-
land, which rank at the bottom of SOC stocks among dif-
ferent vegetation types (Walden et al., 2023). The low SOC
in shrubland is probably due to low carbon input because of

limited rainfall (MAP < 280 mm). Although the mean SOC
stocks in non-forest regions are much smaller than values
for forests, the greater area of vegetation cover results in
considerable total SOC stocks, highlighting the importance
of carbon building and maintenance via improved manage-
ment in these areas. Greater variability in the SOC estimates
among different models appears in the regions where SOC
stocks are higher (Fig. 7). The sparsity of SOC observations
is a primary contributor to the uncertainties associated with
SOC estimates in these regions, highlighting the importance
of continual data collection to better constrain models’ be-
haviour. This imperative is especially pronounced in regions
covered by forests, as forested soils exhibit substantial SOC
stocks, amplifying the significance of abundant and accurate
data acquisition in these specific ecosystems.

5 Conclusions

We compared the performance of two machine learning mod-
els and one process-based microbial model employing two
parameterisation approaches in order to explain the spatial
variation in the SOC concentration in the top 30 cm of soil
in Australia. We found that climate conditions and NPP con-
tribute more than soil clay content to predicting the SOC con-
centration in Australia.

Validation results affirm that, with appropriate filtering of
data (e.g. removing highly managed crop ecosystems), mod-
els can predict the SOC concentration at the continental scale
with reasonably high reliability, achieving explained vari-
ances exceeding 80 % for out-of-sample test data, with ran-
dom forest showing the highest prediction accuracy. Notably,
all models show higher R2 values for the prediction of SOC
in forests compared with non-forest soils. MIMICS, with pa-
rameters optimised for different environmental clusters, per-
formed better with respect to SOC prediction than MIMICS
with parameters optimised for different PFT, especially in
non-forest regions.

All models broadly agree on the spatial distribution of
SOC stocks, with higher SOC stocks concentrated in the
south-eastern and south-western regions of Australia. How-
ever, the variations in estimated values need to be acknowl-
edged, particularly in highly productive regions. Among
these estimates, the k-means algorithm coupled with multi-
ple linear regression yields the highest mean SOC stock es-
timate, whereas the MIMICS-PFT model generates the low-
est estimate. Considerable disagreement regarding the maxi-
mum and minimum SOC stock values predicted by all mod-
els exists, partly because models are less constrained by ob-
servations in these environments, highlighting the need for
continued observational campaigns.

Our investigation has revealed significant disparities in es-
timated SOC stocks when different methodologies are em-
ployed. This highlights the need for a critical re-evaluation
of land management strategies that heavily depend on SOC
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estimates derived from a single approach. The incorporation
of an ensemble of SOC estimates is more likely to effectively
capture elements of the uncertainty associated with SOC es-
timations, providing a more robust basis for informing strate-
gies regarding soil carbon management and climate change
mitigation.

Code availability. The source code of the vertically
resolved MIMICS model can be accessed at https:
//github.com/Wanglingfei170/MIMICS.git (last access: 4 Septem-
ber 2024) and https://doi.org/10.5281/zenodo.13638194 (Wang,
2024). Codes for data analysis and machine learning can be
accessed by contacting the corresponding author.

Data availability. The SOC observations described in
Viscarra Rossel et al. (2014) are not publicly available;
however, they can be obtained from Raphael A. Vis-
carra Rossel (r.viscarrarossel@curtin.edu.au) upon reason-
able request. SOC data from BASE can be accessed at
https://bioplatforms.com/projects/soil-biodiversity/ (Bioplat-
forms Australia, 2024). Climate data from SILO can be ac-
cessed at https://www.longpaddock.qld.gov.au/silo/gridded-data/
(Queensland Government, 2024). The NVIS vegetation map
can be accessed at https://www.dcceew.gov.au/environment/
land/native-vegetation/national-vegetation-information-system
(Australian Government, 2024). Soil properties from SLGA
can be accessed at https://doi.org/10.25919/hc4s-3130 (Mal-
one and Searle, 2022) and https://doi.org/10.25919/gxyn-
pd07 (Malone, 2023). MODIS NPP can be accessed at
https://doi.org/10.5067/MODIS/MOD17A3HGF.061 (Running and
Zhao, 2021).
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