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Abstract. Up-to-date digital soil resource information and its comprehensive understanding are crucial to sup-
porting crop production and sustainable agricultural development. Generating such information through conven-
tional approaches consumes time and resources, and is difficult for developing countries. In Ethiopia, the soil
resource map that was in use is qualitative, dated (since 1984), and small scaled (1 : 2 M), which limit its practical
applicability. Yet, a large legacy soil profile dataset accumulated over time and the emerging machine-learning
modeling approaches can help in generating a high-quality quantitative digital soil map that can provide better
soil information. Thus, a group of researchers formed a Coalition of the Willing for soil and agronomy data-
sharing and collated about 20 000 soil profile data and stored them in a central database. The data were cleaned
and harmonized using the latest soil profile data template and 14 681 profile data were prepared for modeling.
Random forest was used to develop a continuous quantitative digital map of 18 World Reference Base (WRB)
soil groups at 250 m resolution by integrating environmental covariates representing major soil-forming factors.
The map was validated by experts through a rigorous process involving senior soil specialists or pedologists
checking the map based on purposely selected district-level geographic windows across Ethiopia. The map is
expected to be of tremendous value for soil management and other land-based development planning, given its
improved spatial resolution and quantitative digital representation.
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1 Introduction

Soils are important resources that support the development
and production of various economic, social, and ecosystem
services, and are useful in climate change mitigation and
adaptation (Baveye et al., 2016). Data on the physical and
chemical characteristics of soils and their spatial distribution
are needed to define and plan their functions over time and
space, which are important steps toward sustainable use and
management of soils (Elias, 2016; Hengl et al., 2017).

In Ethiopia, soil surveys and mapping have been con-
ducted at various scales with varying scopes, approaches,
methodologies, qualities, and levels of detail (Abayneh,
2001; Abayneh and Berhanu, 2007; Berhanu, 1994; Elias,
2016; Zewdie, 2013). The most recent countrywide digital
soil mapping efforts focused primarily on soil characteristics
(Ali et al., 2020; Iticha and Chalsissa, 2019; Tamene et al.,
2017), although soil class maps are equally important for al-
locating a particular soil unit for specific use (Leenaars et al.,
2020a; Wadoux et al., 2020). Many attempts have been made
to improve digital soil information systems (Hengl et al.,
2021, 2017, 2015; Poggio et al., 2021). However, the initia-
tives were based on limited and unevenly distributed soil pro-
file data (e.g., 1.15 soil profiles per 1000 km2 for Ethiopia),
which restricts the accuracy and applicability of the products.

In Ethiopia, thousands of soil profile data have been col-
lected since the 1960s (Erkossa et al., 2022), but these data
were scattered across different institutions and individuals
(Ali et al., 2020). Furthermore, countrywide quantitative and
gridded spatial soil-type information does not exist (Elias,
2016). The Ethiopian Soil Information System (EthioSIS)
project attempted to develop a countrywide digital soil map
focusing on topsoil characteristics, including plant nutri-
ent content, but overlooked soil resource mapping (Ali et
al., 2020; Elias, 2016), despite a strong need for a high-
resolution soil resource map (Mulualem et al., 2018).

Ethiopia has an area of about 1.14× 106 km2 consisting
of varied environments, making its soils extremely heteroge-
neous. Capturing the heterogeneity using conventional soil
survey and mapping approaches is an expensive and time-
consuming endeavor (Hounkpatin et al., 2018). This can be
circumvented by using available legacy soil profile data accu-
mulated over decades and by tapping into the potential of ad-
vanced analytical techniques to develop high-resolution digi-
tal soil maps (Hounkpatin et al., 2018; Kempen, 2012, 2009).
Therefore, the objectives of this study were to (i) develop a
national legacy soil profile dataset that can be used as an in-
put for various digital soil mapping exercises, and (ii) gener-
ate an improved 250 m digital Reference Soil Groups (RSGs)
map of Ethiopia.

2 Methods

2.1 The study area

The study area covered the entire area of Ethiopia (1.14×
106 km2) located between 3 and 15° N, and between 33 and
48° E (Fig. 1). The topography of the country is marked
by a large altitudinal variation, ranging from 126 m below
sea level at Dalol in the northeast to 4620 m at Ras Dashen
Mountain in the northwest (Billi, 2015; Enyew and Steen-
eveld, 2014). Ethiopia’s wide range of topography, climate,
parent material, and land use types created conditions for the
formation of different soil types (Abayneh, 2005; Berhanu
and Ochtman, 1974; Donahue, 1972; Mesfin, 1998; Nyssen
et al., 2019; Virgo and Munro, 1978; Zewdie, 2013, 1999).
More than 33 % of the country is covered by the central,
upper, and highland complex (Abegaz et al., 2022), which
embraces Africa’s most prominent mountain system (Hurni,
1998).

The country’s complex topography strongly determines
both rainfall and temperature patterns, by modifying the in-
fluence of the large-scale ocean–land–atmosphere pattern,
thus creating diverse localized climates. Spatially, rainfall is
characterized by a general decreasing trend in the direction
from west to east, north, northeast, south and southeast. The
lowlands in the southeast and northeast, covering approxi-
mately 55 % of the country’s land area, are characterized
by arid and semi-arid climates. Annual rainfall ranges from
less than 300 mm in the southeastern and northwestern low-
lands to over 2000 mm in the southwestern highlands (south-
ern portion of the western highlands). The eastern lowlands
get rain twice a year, in April–May and October–November,
with two dry periods in between. The total annual precipi-
tation in this region varies from less than 500 to 1000 mm.
The driest of all regions is the Denakil Plain, which receives
less than 500 mm of rain and sometimes none (Fazzini et
al., 2015). Temperatures are also greatly influenced by the
rapidly changing altitude, and the mean monthly values vary
from ∼ 35 °C in the northeast lowlands to less than 7.5 °C
over the north and central highlands.

The country is characterized by a wide variety of geo-
logical formations (Abyneh, 2005; Alemayehu et al., 2014;
Elias, 2016; Zewdie, 2013). These include (i) recent and old
volcanic activities; (ii) the highlands consisting of igneous
rocks (mainly basalts); (iii) steep-sided valleys characterized
by strong colluvial and alluvial deposits; (iv) metamorphic
rocks exposed by denudation process; and (v) various sedi-
mentary rocks such as limestone and sandstone in the rela-
tively lower areas.

Diverse biophysical factors affecting the spatial distribu-
tion of vegetated land cover which in turn, both as single
and combined factors, result in diverse soil types and prop-
erties across Ethiopia’s landscapes (Hurni, 1998; Nyssen et
al., 2019; WLRC-AAU, 2018). The spatiotemporal vegeta-
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Figure 1. Location map of Ethiopia (inset) and overview map of Esri World Topographic Map.

tion cover of the country has been characterized by a long
history of land use and land cover changes (WLRC-AAU,
2018). In terms of the type and spatial coverage of major land
use and land cover classes, woody vegetation (forest, wood-
land, and shrub and bush lands) covers about 57 % of the
country in accordance with the national 2016 map (WLRC-
AAU, 2018). This is followed by cultivated land (20 %) and
grasslands (12 %). Barren lands are estimated to cover about
1/10 of the area of the country while other minor lands with
ecological significance (i.e., wetlands, water bodies, and sub-
afro-alpine and afro-alpine) cover about 1.2 % of the coun-
try’s land mass.

2.2 Legacy soil profile data collation and preparation

The soil profile data generated over decades through vari-
ous soil survey missions were kept in a variety of formats
with limited accessibility. There has been no institution with
a mandate to coordinate the generation, collation, harmoniza-
tion, and sharing of soil profile data. This led to the formation
of a group of individuals and institutions who were willing
to exchange soil and agronomy data. Established in 2018,
the group known as the Coalition of the Willing (CoW) was
committed to addressing the challenges posed by the lack of

soil and agronomy data access and sharing in the country
(Tamene et al., 2021).

The CoW conducted a national soil and agronomy data
ecosystem mapping which revealed that a plethora of legacy
soil resource datasets exist across different institutions and
individuals (Ali et al., 2020). The assessment also revealed
that a sizable proportion of the data holders were willing to
share the data in their custody, provided that some regula-
tions were put in place to administer the data. The CoW de-
veloped and approved internal data-sharing guidelines (CoW,
2020), and facilitated data collation campaigns, which in-
volved both formal and informal approaches to data holders.

Through a data collation campaign, soil profile data col-
lected between the 1970s and 2021 were acquired from over
88 diverse sources (Ali et al., 2020; Tamene et al., 2021). Ini-
tially, 8000 profile data points were collated and subjected to
improved modeling techniques to create a provisional WRB
reference soil group map of Ethiopia. This was presented to
various partners and data-holding institutions to demonstrate
the power of data sharing. This created awareness and en-
abled us to mobilize and collate over 20 000 legacy soil pro-
file data. These data were then added to the national data
repository.
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The data had varying levels of completeness in terms of
soil field and environmental descriptions and laboratory anal-
ysis. These required a rigorous expert-based quality assess-
ment and standardization before being compiled into a har-
monized format. The expanded version of the Africa Soil
Profile (AfSP) database (Leenaars et al., 2014) template was
used for standardizing and harmonizing the data. Out of the
collated soil profile data, 14 681 georeferenced data points
were extracted based on completeness and cleanness for the
purposes of modeling. The cleaned soil profile data set con-
tained, at least, the reference soil group (RSG) nomenclature
as outlined in the WRB legend. While the original soil pro-
file records were set in different coordinate systems, all were
projected into the adopted standard georeferencing system,
namely, WGS84, decimal degrees in the QGIS (3.20.2) en-
vironment (QGIS Development Team, 2021). To verify their
position, soil profile locations were plotted using a standard
WGS84 coordinate system to verify that points matched the
site description, geomorphological settings, and at the very
least the source project boundary outline.

The accuracy of the data depends on the quality and reli-
ability of the survey data themselves, which in turn requires
expert knowledge and experience in soil description and clas-
sification (Leenaars et al., 2020a). In this study, data clean-
ing, validation, reclassification, and verification were carried
out by a team of prominent national pedologists and soil sur-
veyors, including those involved in the generation of some of
the soil profile data themselves (Fig. 2).

In addition, the Ministry of Agriculture (MoA) soil sur-
vey and mapping experts and other volunteers validated the
legacy soil profile observations. This led to the reclassifica-
tion of the soil types as deemed necessary. Such validation
and reclassification involved re-examining the geomorpho-
logical setup of the soil profile locations using Google Earth
as well as reviewing the site and soil descriptions and the cor-
responding laboratory data, and reviewing the proposed soil
type. The harmonized datasets in the database were used as
input soil profile data for modeling and mapping IUSS WRB
reference soil groups.

2.3 Preparation and selection of environmental
covariates

2.3.1 Covariate acquisition and preparation

In order to develop spatially continuous soil class and/or
type maps, data on environmental covariates that represent
directly or indirectly the soil-forming factors have to be inte-
grated with soil profile data (Hengl and MacMillan, 2019).
Environmental covariates are spatially explicit proxies of
soil-forming factors based on the soil–environment relation-
ship (McBratney et al., 2003; Shi et al., 2018). Acquisi-
tion and preparation of covariates represent a crucial step
in digital soil mapping using machine-learning algorithms
(McBratney et al., 2003). In this study, 68 potential candi-

date environmental variables representing soil-forming fac-
tors (climate, organisms, relief, parent material, and time)
were derived from diverse remote sensing products and the-
matic maps (Hengl and MacMillan, 2019; McBratney et al.,
2003).

Relief and topography-related covariates were derived
from a 90 m Shuttle Radar Topography Mission (SRTM) dig-
ital elevation model (DEM) (Vågen, 2010). Climate-related
variables including long-term mean, minimum, maximum,
and standard deviation temperature as well as precipita-
tion data for the period between 1983 and 2016 (Dinku
et al., 2014) were acquired from Enhancing National Cli-
mate Services (ENACTS-NMA) initiatives with 4 km res-
olutions (Dinku et al., 2014). Moderate-resolution imag-
ing spectroradiometer (MODIS) imagery raw bands and de-
rived indices (Vågen, 2010) were downloaded from USGS
EarthExplorer (https://earthexplorer.usgs.gov/, last access:
12 November 2021) to represent vegetation-related factors.
National geological (Tefera et al., 1996) and land use and
land cover (WLRC-AAU, 2018) thematic maps of Ethiopia
were gathered to represent parent material and organisms, re-
spectively.

Downscaling (disaggregating) or upscaling (aggregating)
of rasters was also performed to match the target resolu-
tion. A 250 m spatial resolution was chosen to accommodate
both the spatial resolution of the major covariate inputs and
make it applicable for large-scale analysis. All layers were
masked for buildings and water bodies by the national bound-
ary of Ethiopia and a stacked layer was created using the
raster package (R Core Team, 2020) to extract covariate val-
ues at the locations of soil profiles. One-hot encoding using
the dummyVars function available in Caret package (Kuhn,
2008) was used to pre-process and convert categorical co-
variates into a binary vector. Each element of the binary
vector represents the presence or absence of that category.
One-hot encoding is beneficial because it enables machine-
learning algorithms to interpret categorical variables as nu-
merical features. The covariate pre-processing, visual inspec-
tion for inconsistencies, and resampling to a target grid of
250 m were conducted in QGIS [3.20.2] (QGIS Develop-
ment Team, 2021), SAGA GIS [7.8.2] (Conrad et al., 2015)
and R [version 4.05] (R Core Team, 2020) software pack-
ages. All input data were projected to a common Lambert
azimuthal equal-area projection with the latitude of origin
at 8.65 and center of meridian at 39.64, which is the cen-
ter point for Ethiopia. This projection was selected since it is
effective in minimizing area distortions over land. Each co-
variate was adjusted to have an identical spatial resolution,
extent, and projection using two resampling methods. Con-
tinuous covariates were resampled using the bilinear spline
method, whereas categorical covariates were resampled us-
ing the nearest neighbor method.
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Figure 2. Schematic presentation of data acquisition and workflow.

2.3.2 Covariate selection

Selecting an optimal set of covariates to effectively repre-
sent the soil–environment relationship is a key step in digital
soil mapping (DSM) since improper selection of covariates
will affect the quality of model outputs (Shi et al., 2018). In
this study, near-zero variance assessment was conducted us-
ing the nearZeroVar function available in the R caret package
(Kuhn, 2008) to identify and remove environmental variables
that have little or no variance. In addition, preliminary ran-
dom forest model training was performed to assess and iden-
tify covariates having high variable importance. After expert
judgment, a total of 27 environmental variables (24 contin-
uous and 3 categorical) were selected for modeling and pre-
dicting RSGs.

2.4 Modeling and mapping soil types or reference soil
groups

2.4.1 Model tuning and quantitative evaluation

In digital soil mapping, machine-learning techniques have
been extensively used to determine the relationship between
soil types and environmental variables (McBratney et al.,
2003). Many machine-learning models were developed in
the past decades for digital soil mapping to spatially pre-
dict soil classes based on existing soil data and soil-forming
environmental covariates (Heung et al., 2016). Random for-
est (RF), a tree-based ensemble method, is one of the most
promising machine-learning techniques available for digital
soil mapping (Breiman, 2001; Heung et al., 2016). RF has
gained popularity due to its high overall accuracy and has
been widely used in predictive soil mapping (Brungard et al.,
2015; Hengl et al., 2018). Examples of the main strengths of

the RF model are its ability to handle numerical and categor-
ical data without any assumption of the probability distribu-
tion, and its robustness against nonlinearity and overfitting
(Breiman, 2001; Svetnik et al., 2003). While building the RF
model, data were split into training (80 %) and testing (20 %)
components using random sampling for training the model
and evaluating its performance, respectively (Kuhn, 2008).
Hyper-parameter optimization and repeated cross-validation
on the training dataset were performed for optimal model ap-
plication using the ranger method of the Caret package. The
three tuning parameters for ranger method are mtry, splitrule,
and .min.node.size. Generally this function is used to tune
the parameters in modeling in an automated fashion, as this
will automatically check all the possible tuning parameters
and return the optimized parameters on which the model
gives the best accuracy. Model tuning was performed with a
repeated 10-fold cross-validation procedure applying multi-
ple combinations of hyper-parameters for the ranger method.
This is a fast implementation of RF particularly suited for
high-dimensional data (Wright and Ziegler, 2017). Then the
number of covariates used for the splits (mtry), splitting rules
(splitrule), and minimum node size (min.node.size) were op-
timized. The parameter ntree was adjusted to 1000 in the
model, and mtry values (10, 15, 20), min.node.size values
(5, 10, 15), and splitrule values (“variance”, “extratrees”, and
“maxstat”) were fed for the optimization procedure. The ac-
curacy of the testing dataset was related to the model per-
formance for the new dataset, indicating the capacity of the
model to predict at the unsampled location. A confusion
matrix was also used to calculate a cross-tabulation of ob-
served and predicted classes with associated statistics, i.e.,
producer’s accuracy and user’s accuracy.

https://doi.org/10.5194/soil-10-189-2024 SOIL, 10, 189–209, 2024
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2.4.2 Software and computational framework

In this study, various open-source software packages that
provide a comprehensive set of tools and diverse capabilities
were used for data preparation, analysis, and visualization.
Data pre-processing and preparation were performed using
QGIS (QGIS Development Team, 2021) and SAGA GIS
(Conrad et al., 2015). For statistical analysis and machine-
learning modeling, R (R Core Team, 2020) and relevant li-
braries were installed on a Windows server, 2016 standard
with 250 GB of working memory, to handle the challenges
associated with large-scale data processing and analysis.

2.4.3 Expert evaluation of spatial patterns of the
beta-version soil map

Visual inspection of the DSM output over the terrain was
used to identify abnormalities and assess how effectively it
depicts landscape components (Rossiter et al., 2022). For
this, we employed an expert-based qualitative assessment of
the model output. This technique was used to complement
model-based accuracy assessment and confirm agreement
soil specialists or pedologists checking the map based on
purposely selected district-level geographic windows across
Ethiopia, representing different agro-ecological zones known
to have diverse soil occurrences, and that were familiar to
the panel of experts. Accordingly, an expert validation work-
shop was conducted using the first version of the reference
soil groups (RSGs) map. About 45 multi-disciplinary scien-
tists including soil surveyors, pedologists, geologists, and ge-
omorphologists were drawn from national and international
research, development, and higher-learning institutions to re-
view the draft RSG map in plenary discussions. This was
followed by breakout sessions where groups of experts eval-
uated the map based on their experience and knowledge of
soil–landscape relations of the country and examined geo-
graphic windows.

Most importantly, disagreements regarding RSG occur-
rence and patterns of the modeling outputs across topo-
sequences and contrasting soil-forming factor sequences
were identified and discussed. Further, inferences on parts
of the DSM framework that require improvement were rec-
ommended. After finalizing the evaluation at the group-level
assessment, each group presented the results in the plenary
followed by a discussion to get feedback from other par-
ticipants. Following the plenary discussions, the participants
created a group of six senior pedologists to work on the rec-
ommendations including changing the quality mask layer,
validating the additional data obtained during the event, and
assessing the re-modeling outputs.

After the second model was re-run, the group of senior
pedologists together with geospatial experts re-evaluated the
output using the selected districts based on the feedback
from the first review, which was mainly on areas where there
were “minor” and “major” concerns. Consequently, some

improvements were made, e.g., in the areas where Vertisols,
Fluvisols, and Leptosols were overestimated. Further, under-
estimated RSGs (Alisols, Solonetz, Planosols, Acrisols, Lix-
isols, Phaeozems, and Gleysols) showed a slight increase in
area coverage and pattern improvements. However, the total
area of Leptosols and Cambisols increased from the first run
due to the partial exclusion of the mask layer used in the first
round of modeling. The mask layer used in the first run was
criticized for quality issues as it excluded significant soil ar-
eas and due to its weakness in capturing non-soil areas such
as rock outcrops, salt flats, swamps, and sand dunes. Never-
theless, the spatial patterns of these soils occurring across
previously considered “non-soil areas” were examined by
the panel of experts. In parallel, geospatial and soil experts
checked the raster map of the RSGs in the GIS environ-
ment to ensure areas with “no concern” before re-running
the model are kept the same or changes are accepted by the
panel of experts. The map from the second run is presented
in this paper as EthioSoilGrids version 1.0 product.

3 Results and discussion

3.1 Soil profile datasets

Using the IUSS WRB (2015), the preliminary identified
14 742 georeferenced legacy soil profiles were classified
and/or reclassified into 23 RSGs. Nearly 90 % of the soil pro-
file points represented Vertisols, followed by Luvisols, Cam-
bisols, Leptosols, Fluvisols, and Nitisols, which were found
to be the dominant soil types in Ethiopia (Fig. 3). The re-
maining 10 % represented the Regosols, Alisols, Andosols,
Arenosols, Calcisols, Solonetz, Lixisols, Phaeozems, Solon-
chaks, Acrisols, Planosols, Gleysols, Umbrisols, Ferralsols,
Gypsisols, Plinthosols, and Stagnosols.

According to this study, about 72 % of the IUSS
WRB (2015) RSGs were confirmed to occur in Ethiopia. This
reconfirms the characterization of Ethiopia as a land of soil
diversity being endowed with a diverse range of soil types
(Elias, 2016; Mishra et al., 2004). One of the limitations
with legacy soil data in categorical mapping is the imbal-
anced soil samples, in that all classes are not equally repre-
sented (Wadoux et al., 2020). For this study, soil profiles with
fewer than 30 observations were objectively excluded from
the model after examining the accuracy and spatial distribu-
tion of each RSG. Five RSGs (Umbrisols, Ferralsols, Gyp-
sisols, Plinthosols, and Stagnosols) were excluded from the
model and the EthioSoilGrids version 1.0 map.

After excluding the built-up and water surface areas, the
average soil profile density was 13.1 per 1000 km2 (Fig. 4),
but the actual density varied across the different parts of
the country. The variation tends to follow river basins, sub-
basins, and agricultural land-use type-based studies from
which most of the legacy data were pulled. For instance, in 30
intervention districts of the Capacity Building for Scaling up
of Evidence-Based Best Practices in Agricultural Production
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Figure 3. Number of soil profile points per WRB reference soil groups.

Figure 4. Spatial distribution of collated legacy soil profile data.

in Ethiopia (CASCAPE) project, the average profile density
was about 87 profiles per 1000 km2 for a total area of about
26 830 km2 (Leenaars et al., 2020a). Similarly, semi-detailed
soil mapping missions in 15 districts conducted through the
Bilateral Ethiopia–Netherlands Effort for Food, Income and
Trade (BENEFIT)-REALISE project generated about 217
observations per 1000 km2 (Leenaars et al., 2020b).

A soil type and depth map compilation and updating mis-
sion at a 1 : 250 000 scale by the Water Land Resource Cen-
ter (WLRC) of Addis Ababa University collated and used
about 3949 legacy soil profiles for the entire country (Ali et
al., 2020), which is approximately 3.5 profiles per 1000 km2.
Although the distribution is not even and the eastern low-
lands are sparsely represented, the number of data used in
this study is 8.5 times higher than the 1712 legacy soil pro-
files data currently existing in the Africa soil profile database
(Batjes et al., 2020; Leenaars et al., 2014).

The distribution of the soil profiles across the 32 agro-
ecological zones (AEZ) of Ethiopia revealed that all, except
two – tepid per-humid mid-highland (0.13 % landmass) and
very cold sub-humid sub-afro-alpine to afro-alpine (0.03 %
landmass) – were represented by soil profile observations.
Furthermore, about 95 % of the profile observations repre-
sented 91 % of the AEZ aerial coverage (Appendix A). The
distribution of legacy soil profiles varied across AEZs. In
general, the top-ranked lowland AEZs with roughly 56 %
area coverage were represented by 23 % of the total profile
observations, whereas top-ranked highland AEZs with 20 %
area coverage received 47 % of profile observations. For in-
stance, warm desert, warm moist, hot arid, and warm sub-
moist lowlands with area coverage of around 20 %, 15 %,
11 %, and 10 %, were represented roughly by 3 %, 11 %,
2 %, and 7 % of the total profiles, respectively. Tepid moist
mid-highlands (8 % area coverage), tepid sub-humid mid-
highlands (7 % area coverage), and tepid sub-moist mid-
highlands (5 % area coverage) each were represented by
20 %, 15 %, and 12 % of the profiles, respectively.

3.2 Modeling and mapping

3.2.1 Variable importance

The RSG spatial pattern is primarily influenced by long-
term average surface reflectance, flow-based DEM indices,
and precipitation. Figure 5 shows variables of importance
for determining RSG spatial prediction. The top-ranked vari-
ables were (i) long-term MODIS near-infrared (NIR) re-
flectance, (ii) multiresolution index of valley bottom flatness,
(iii) long-term mean day–land surface temperature, (iv) long-
term mean soil moisture, (v) standard deviation of long-term
precipitation, (vi) long-term mean precipitation, and (vii) to-
pographic wetness index.

MODIS long-term mean spectral signatures showed high
relative importance. According to Hengl et al. (2017), ac-
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counting for seasonal vegetation fluctuation and inter-annual
variations in surface reflectance, long-term temporal signa-
tures of the soil surface, derived as monthly averages from
long-term MODIS imagery, were more effective. Further-
more, Hengl and MacMillan (2019) explained that long-term
average seasonal signatures of surface reflectance provide a
better indication of soil characteristics compared with only a
single snapshot of surface reflectance.

The multi-resolution valley bottom flatness index, a DEM-
derived topography index, is the second top-ranked covariate
driving soil variability across Ethiopia. This hydrological/-
soil removal and accumulation or deposition index is used
to distinguish valley floor and ridgetop landscape positions
(Soil Science Division Staff, 2017) greatly responsible for
multiple soil-forming processes to operate over a particu-
lar landscape, resulting in a wide range of soil development.
The influence of topography on spatial soil variation is man-
ifested in every landscape of Ethiopia (Belay, 1997; Mesfin,
1998; Nyssen et al., 2019; Zewdie, 2013).

Long-term daily mean land surface temperature, mean soil
moisture, rainfall standard deviation, and mean annual rain-
fall were among the top-ranked covariates for predicting the
spatial variation of RSGs across the country. In Ethiopia, dif-
ferent soil genesis studies revealed that climate has a signif-
icant influence on soil development and properties and is,
therefore, responsible for the existence of widely varying
soils in the country (Abayneh, 2005; Abayneh et al., 2006;
Fikru, 1988, 1980; Zewdie, 2013).

Among the most important covariates for predicting RSGs
in the Ethiopian highlands are monthly average soil mois-
ture for January (ranked third), long-term average soil mois-
ture (ranked fourth), and monthly average soil moisture for
August (ranked fifth) (Leenaars et al., 2020a). In the current
study, soil moisture was among the 10 top-ranked covariates
in modeling and explaining long-distance soil type variabil-
ity across the country.

In this study, lithology showed a relatively low influence
on soil variability that may be due to the use of a coarse-scale
and less detailed lithology map, which may not sufficiently
capture the spatial variability of the parent materials.

3.2.2 Model performance

The parameter optimization process resulted in mtry= 20,
split rule= extra trees and minimum node size= 5. The over-
all accuracy of the model was 56.24 % which ranged between
54.43 % and 58.1 % with a 95 % confidence interval. The
kappa values based on the internal cross-validation and test-
ing dataset showed that the overall model performance pro-
duced using 10-fold cross-validation with the repeated fitting
was 48 %. Considering similar area-based digital soil class
mapping efforts, the overall accuracy was in line with the
accuracies that were typically reported for soil class maps
developed with RF models (Leenaars et al., 2020a) and sta-
tistical methods (Heung et al., 2016). Table 1 shows the con-

fusion matrix at validation/testing points, i.e., 20 % of the ob-
servation. Further, the matrix indicates the producer’s accu-
racy (class representation of observed versus predicted) and
user’s accuracy were not similar for all RSGs. The map pu-
rity is in the order of Lixisols, Calcisols, Alisols, Phaeozems,
Vertisols, Andosols, Solonchaks, Fluvisols, Arenosols, Lep-
tosols, Luvisols, Nitisols, and Cambisols. However, Verti-
sols, Calcisols, and Andosols are the observed classes that
are best represented by the map followed by Fluvisols, Al-
isols, Nitisols, Leptosols, Luvisols, and Cambisols.

Global soil grids at 250 m resolution used machine-
learning algorithms to map the global WRB RSGs with map
purity and weighted kappa of 28 % and 42 %, respectively
(Hengl et al., 2017). The SoilGrids 250 m WRB soil groups/-
classes prediction output–spatial soil patterns were not eval-
uated based on expert knowledge while in this study we did
an extensive back-and-forth qualitative assessment by a panel
of pedologists. The quantitative accuracy in the present study
(about 56 %) coupled with an expert-based qualitative eval-
uation of the predicted maps indicated the development and
achievement of a substantially enhanced national product for
users of spatial soil resource information. This finding is a
step forward and acceptable considering that SoilGrids maps
are not expected to be as accurate as locally produced maps
and models that use many more local-point data and finer lo-
cal variables (Mulder et al., 2016). Further, the data and find-
ings in this study can help improve the soil maps of Africa
as they partially address the concern by Hengl et al. (2017),
who recognized that WRB RSGs modeling in the global Soil-
Grids 250 m is critically uncertain for parts of Africa. This is
mainly attributed to limited access to more local point data by
regional and global modeling initiatives, unlike the present
study which accessed a large number of legacy soil profile
datasets.

3.2.3 Modeling and mapping: EthioSoilGrids version 1.0

The study identified 18 RSGs in Ethiopia, mapped at 250 m
resolution (Fig. 6). The model prediction showed that seven
soil reference groups including Cambisols, Leptosols, Ver-
tisols, Fluvisols, Nitisols, Luvisols, and Calcisols covered
nearly 98 % of the total land area of the country (Fig. 7). Five
soil reference groups (Solonchaks, Arenosols, Regosols, An-
dosols, and Alisols) were estimated to cover about 2 % of
the land area, while trace coverages of Solonetz, Planosols,
Acrisols, Lixisols, Phaeozems, and Gleysols were also found
in some pocket areas.

In terms of spatial distribution, Nitisols and Luvisols dom-
inated the northwestern and southwestern highlands while
the southeastern lowlands were dominantly covered by Cam-
bisols, Calcisols, and Fluvisols with some Solonchaks. The
Vertisols extensively cover the north and southwestern low-
lands along with the Ethiopia–Sudan border areas and cen-
tral highland plateaus. The probability of occurrence of each
RSG was mapped (Appendix C) in each modeling spatial
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Figure 5. Random forest covariate relative importance for modeling RSGs. Note: prep= precipitation; prep_sd= standard devia-
tion of precipitation; tmax=maximum temperature; tmin=minimum temperature; trange= temperature range; tav_sd= standard devi-
ation of average temperature; pet= potential evapotranspiration; lstd= land surface temperature–day; lstn= land surface temperature–
night; soil_moist= soil moisture; soil_temp= soil temperature; DEM = digital elevation model (elevation); twi= topographic wet-
ness index; aspect= topographic aspect; curv= topographic curvature; conv= topographic convergence index; ls= slope length and
steepness factor (ls_factor); morph= terrain morphometry; mrvbf=multiresolution index of valley bottom flatness; slope= slope class
(%); ndvi= normalized difference vegetation index (NDVI); evi= enhanced vegetation index (EVI); lulc= land use/land cover; lithol-
ogy= geology; ref1= red band; ref2= near-infrared; ref7=mid-infrared.

window (i.e., the cell size of 250 m× 250 m). The dominant
RSGs were aggregated based on the most probable RSGs in
each spatial modeling window. There was high correspon-
dence between the seven top-ranked prediction probabilities
and observed soil types as confirmed visually by overlaying
observed classes and prediction probabilities.

The overall occurrence and the relative position of each
of the RSGs along the topo-sequence and its association
with other RSGs agree with previous works (Abayneh et
al., 2006; Ali et al., 2010; Abdenna et al., 2018; Asma-
maw and Mohammed, 2012; Belay, 2000, 1998, 1997, 1996;
Driessen et al., 2001; Elias, 2016; FAO, 1984a; Fikre, 2003;
Mitiku, 1987; Mohammed and Belay, 2008; Mohammed and
Solomon, 2012; Mulugeta et al., 2021; Nyssen et al., 2019;
Sheleme, 2017; Shimeles et al., 2007; Tolossa, 2015; Zewdie,
2013). However, in some cases, the position of the RSGs
along the topo-sequence and the association with other RSGs
require further investigation. The disparities observed might
be attributed to the positional accuracy of legacy point ob-

servations, the modeling approach, and most importantly
the level of detail and scale/resolution of the environmen-
tal variables used in this study. We used the currently avail-
able coarse-resolution national geological map and hence
soil parent material might be inadequately represented in
the model, which probably resulted in irregular RSG se-
quences. For instance, the main driving factors to establish
and explain the soil-landscape variability in the May-Leiba
catchment of northern Ethiopia were geology (soil parent
material) and different mass movements (Van de Wauw et
al., 2008). These factors led to Cambisols–Vertisols cate-
nas on basalt and Regosols–Cambisols–Vertisols catenas on
limestone formations. Similar studies identified parent mate-
rial strongly determines the soil type (e.g., Vertisol, Luvisol,
Cambisol) (Nyssen et al., 2019). In general, in areas where
there is complex soil diversity and distribution of soils, one
of the most important parameters is to identify parent ma-
terial including effective techniques to capture and delineate
mass movement bodies, and human-induced soil erosion and
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Table 1. Confusion matrix of random forest RSG prediction (at validation/testing observations).
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Acrisols 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0.33 3
Alisols 0 40 0 0 0 0 1 1 0 0 9 4 0 0 2 0 0 2 0.68 59
Andosols 0 0 28 1 1 3 5 0 2 0 2 0 0 0 0 0 1 1 0.64 44
Arenosols 0 0 0 11 0 2 1 0 0 0 5 0 0 0 0 0 0 1 0.55 20
Calcisols 0 0 0 0 21 0 1 0 0 0 2 0 0 0 0 0 0 5 0.72 29
Cambisols 2 3 6 9 1 197 28 2 35 2 47 16 5 1 16 3 3 28 0.49 404
Fluvisols 1 0 3 5 1 34 144 0 9 0 15 7 0 0 1 5 5 17 0.58 247
Gleysols 0 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0 0.40 5
Leptosols 0 1 4 3 3 47 11 0 176 0 27 7 1 0 32 0 0 24 0.52 336
Lixisols 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1.00 1
Luvisols 2 16 3 8 0 34 13 2 33 3 216 30 3 0 25 1 0 41 0.50 430
Nitisols 6 8 0 0 1 23 8 3 18 8 29 132 0 1 8 0 1 21 0.49 267
Phaeozems 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0.67 3
Planosols 0 0 0 0 0 0 0 0 0 0 1 1 0 5 1 0 0 1 0.55 9
Regosols 0 0 0 0 0 7 1 0 7 1 8 1 0 0 22 0 0 5 0.42 52
Solonchaks 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 0 0.60 5
Solonetzs 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 1 6 0 0.46 13
Vertisols 3 1 3 5 5 92 32 2 61 3 81 31 5 5 25 2 6 641 0.64 1003
Producer 0.07 0.58 0.60 0.26 0.62 0.44 0.58 0.17 0.51 0.06 0.49 0.58 0.13 0.38 0.17 0.20 0.25 0.81 0.56 –
accuracy

Total 15 69 47 42 34 443 247 12 342 18 445 229 16 13 132 15 24 787 – 2930

deposition areas (Leenaars et al., 2020a; Nyssen et al., 2019;
Van de Wauw et al., 2008).

Considering the third position of Cambisols in the or-
der of frequency of occurrence of RSGs per point observa-
tions (following Vertisols and Luvisols), these soils seem to
be over-represented on the map (ranked first) apparently at
the expense of Vertisols and Luvisols, and to some extent
in places of Leptosols and other RSGs. This might be at-
tributed to the fact that Cambisols create a geographical con-
tinuation with Vertisols and/or Luvisols at the lower slopes
and Leptosols/Regosols at the higher slopes, suggesting the
presence of some bordering soil qualities in respective tran-
sitional zones (Ali et al., 2010; Asmamaw and Mohammed,
2012; Sheleme, 2017; Zewdie, 2013).

The proportion of area mapped as Cambisols (34 %) re-
vealed new insights compared with the information from
the most cited spatial soil maps: Cambisols ranked second
(21 %), second (16 %), fourth (9 %), and fourth (8 %) as re-
ported by Berhanu (1980), FAO (1984b, 1998), and Soil-
Grids – Hengl et al. (2017), respectively. This might be
due to (i) the number and distribution of profile observa-
tions, which is more extensive than the previous ones; (ii) the
type and level of details of covariates considered; (iii) vari-
ations and rearrangements in the keys for classification of
the RSGs among soil classification versions used in previous
studies and misclassification/confusion of Vertisols with Ver-
tic Cambisols, as legacy soil profile data come from diverse
sources.

3.3 Expert validation of the soil map

Expert knowledge of soil–landscape relations and soil dis-
tribution remains important for evaluating the predictive soil
mapping results and assessing whether the predicted spatial
patterns make sense from a pedological viewpoint (Hengl
et al., 2017; Poggio et al., 2021; Rossiter et al., 2022). An
important step in qualitative model evaluation is, therefore,
expert assessment, whereby professionals with broad expe-
rience in soil survey and mapping can evaluate and improve
the quality of the soil resource map. This can highlight ar-
eas of agreement or concern across the landscape (Rossiter
et al., 2022). The expert validation workshop provided use-
ful insights and tangible improvements to the development of
the map. While the plenary discussion provided an overview
of the approaches followed in developing the map, the group
discussions helped to have an in-depth review of the selected
polygons of the map assigned to them. Participants were split
into five groups (with 8–10 members each) and chose up to
60 polygons representing areas with which at least one of
the group members has sufficient information, including data
sources. Overall, the groups checked a total of 126 polygons
(Fig. 8), which were fairly evenly distributed across the coun-
try.

The group members displayed the polygons one by one
in a GIS environment and discussed the predicted dominant
and associated soil RSGs and labeled them in one of three
confirmation categories: (1) confirmed with “no concern”,
(2) confirmed with “minor concern”, and (3) confirmed with
“major concern”. Confirmation with “no concern” was made
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Figure 6. Major reference soil groups of Ethiopia (EthioSoilGrid V1.0).

Figure 7. The area coverage (in %) for the major WRB RSGs. Note:
the remaining 10 RSGs-Arenosols (0.44 %), Regosols (0.35 %), An-
dosols (0.31 %), Alisols (0.16 %), Solonetzs (0.04 %), Planosols
(0.04 %), Acrisols (0.02 %), Lixisols (0.02 %), Phaeozems (0.02 %),
and Gleysols (0.01 %) were not plotted because of their relatively
small area coverage.

when all members of a group agreed on the types, the rela-
tive coverage, and the patterns of the predicted soils within
the polygon. Confirmation with “minor concern” was made
when all or some of the team members agreed on the pre-
dicted soil types within the polygons but did not agree on the
order of abundance or the probability occurrence of one or
two soils including observed spatial patterns. Confirmation
with “major concern” was made when all members of the
team did not agree on the predicted soil type, or when the

presence of another soil type, other than the predicted types,
was noted.

All three groups rated the accuracy of the map at 60+%;
of the 126 polygons, they expressed no concern for 63 %,
minor concern for 23 %, and major concern for 14 % of
the polygons. Furthermore, differences in the prevalence of
RSGs and patterns of the modeling outputs across different
soil-forming factor sequences, as well as inferences about
which areas of the DSM framework still need work, were
identified and elaborated on by the expert input and are pre-
sented in the subsequent sections.

3.4 Evaluation of results, limitations, and future direction

Up-to-date soil resource spatial information is critically
missing at the required scale and extent in Ethiopia. As a re-
sult, resource management strategies miss their targets. Fur-
thermore, the absence of such data at a required resolution
and extent forced developers of decision support tools to pick
and use the data they can access and afford. As a result,
model outputs appear more site-specific or representation be-
comes homogeneous over the very heterogeneous landscapes
that exist in reality. On the other hand, in large areas and com-
plex landscapes such as Ethiopia, it is very difficult to address
the demand for reasonably accurate and detailed soil-type
maps using a conventional approach due to the costs involved
and to the resources and time this requires. For instance,
given the vastness of the country and the heterogeneous land-
scapes, a new conventional soil survey mission requires at
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Figure 8. The spatial distribution of districts validated by stakeholders and feedback categories according to the level of concerns raised.

least 170 000 profile point observations to map the entire ter-
restrial land mass of Ethiopia at a scale of 1 : 250 000 with
at least one observation per square centimeter. Moreover,
the soil profile data requirement definitely could have been
much higher as we increase the scale of mapping and den-
sity of observations. In the present study, machine-learning
techniques combined with expert input were implemented to
produce a countrywide soil resource map of Ethiopia at rea-
sonably higher accuracy and with less time and cost com-
pared with conventional methods. In addition, rescue, com-
pilations, and standardization of about 14 681 geo-referenced
legacy soil profiles that can be included in the National Soil
Information System (NSIS) of Ethiopia and the World Soil
Information Center will support future national, regional, and
global DSM efforts. The approach used here demonstrates
the power of data and analytics to map the soil resources of
Ethiopia, and the output is an exemplary use case for similar
digital content development efforts in Ethiopia and beyond.

Moreover, in this study the quality-monitoring processes
and methods were followed to filter dubious soil profiles
as well as soil classification and harmonization protocols.
Thereafter, the study followed a robust modeling framework
and generated new insights into the relative area coverage of
WRB RSGs of Ethiopia. In addition, the study provided co-
herent and up-to-date digital quantitative gridded spatial soil
resource information to support the successful implementa-
tion of various digital agricultural solutions and decision sup-
port tools (DSTs).

The spatially explicit limitation of the present study is re-
vealed by expert-based qualitative evaluation of spatial pat-
terns across objectively selected geographic windows and

prominent contrasting landscapes of Ethiopia. This qualita-
tive assessment indicated areas of concern in terms of how
well EthioSoilGrids version 1.0 represents soil geography
across a mosaic of the country’s landscapes. For instance, in
the northeastern lowlands of Ethiopia, mainly along the “De-
nakil” depression, Fluvisols, Cambisols, and Vertisols were
found on the map in areas where normally other soil types
were expected to occur. In this area, the expected prediction
and area coverage of Leptosols has probably been overshad-
owed by Fluvisols and Cambisols. Similarly, in some parts of
western Ethiopia landscapes, the prediction of Vertisols over-
shadows other RSGs, which resulted in an underestimation
of the area coverage of Fluvisols (along the “Akobo”, “Gilo”,
and “Baro” rivers and their tributaries) and Alisols. Likewise,
in the central parts of northwestern Ethiopia, the prediction of
Nitisols was overshadowed by Vertisols and Luvisols, result-
ing in a likely underestimation of the Nitisols area coverage.

The relatively low model performance and some classifi-
cation errors in some of the examined geographic windows
(e.g., the Denakil depression, along Akobo, Baro, and Gilo
rivers and the Somali region) are probably due to the paucity
of samples from those areas (Fig. 4), the inadequacy of the
dataset by RSGs, and over-representation of the dataset by
some RSGs, such as Vertisols, Luvisols, and Cambisols. Bal-
anced datasets are ideal to allow decision tree algorithms
to produce better classification but for datasets with uneven
class size, the generated classification model might be biased
toward the majority class (Hounkpatin et al., 2018; Wadoux
et al., 2020). In addition, uncertainty around the quality of
the covariates included, not the covariates considered in the
modeling process including management, use of validation
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methods that do not sufficiently control the effect of clustered
samples, and small sample size for some RSGs could have
possibly biased the modeling results in some geographic ar-
eas.

To improve the modeling performance, future studies
could explore (i) adding data for under-represented geo-
graphic areas, land uses, and covariate spaces; (ii) opportu-
nities to include other covariates (parent material and man-
agement) that could capture the variability of the country’s
heterogeneous landscapes; (iii) dimension reduction of co-
variates; (iv) use of remedial measures for imbalances in
sample sizes; (v) comparing different cross-validation meth-
ods; (vi) use of an ensemble modeling approach and/or
robust modeling technique that accommodates neighbor-
hood size and connectivity analyses; (vii) use of a better-
resolution/quality mask layer to segregate non-soil areas
(rock outcrops, salt flats, sand dunes, and water bodies)
from mapping areas; and (viii) implementation of quantita-
tive and qualitative comparisons of national, regional, and
global legacy soil maps/soil grids with new DSM products in
terms of how well DSM products represent soil geography.
In addition, future digital soil mapping strategies in Ethiopia
may require consideration of new soil sampling missions
in under-represented areas; adoption of standard soil sam-
pling, description guidelines, and soil classification systems
including soil physicochemical and mineralogical analysis;
and a combination of local soil nomenclature/classification
systems with RSGs and development of a map of RSGs
with qualifiers. At the moment the under-sampled and under-
represented areas are the Somali region, the Denakil, and the
western and northwestern border areas of Ethiopia (Fig. 4).
Despite these limitations, and to the best of our knowledge,
the EthioSoilGrids v1.0 product provides the most complete
soil information available for Ethiopia.

4 Conclusions

Coherent and up-to-date countrywide digital soil information
is essential to support digital agricultural transformation ef-
forts. This study involved collation, cleaning, harmonization,
and validation of the legacy soil profile datasets, involving
soil scientists with different backgrounds individually and in
groups. To develop the 250 m digital soil resource map, a
machine-learning modeling approach and expert validation
were applied to the harmonized soil database and environ-
mental covariates affecting soil-forming processes. Accord-
ingly, about 20 000 soil profile data were collated, out of
which about 14 681 were used for the modeling and map-
ping of 18 RSGs out of the 23 RSGs identified. Although
unevenly distributed, the legacy soil profile data used in the
modeling covered most of the agro-ecologies of the country.

Among the 18 RSGs mapped, the highest number of ob-
served (3935) profiles represent Vertisols, followed by Lu-
visols, Cambisols, and Leptosols, while Gleysols were rep-

resented with the lowest number (63) of profiles. The mod-
eling revealed that the most important covariates for predict-
ing RSGs in Ethiopia are MODIS long-term reflectance, mul-
tiresolution index of valley bottom flatness, land surface tem-
perature, soil moisture, long-term mean annual rainfall, and
wetness index of the landscape.

Our 10-fold spatial cross-validation result showed an over-
all accuracy of about 56 % with varying accuracy levels
among RSGs. The modeling result revealed that seven major
soil reference groups including Cambisols (34 %), Leptosols
(20 %), Vertisols (18 %), Fluvisols (10 %) Nitisols (7 %), Lu-
visols (6 %), and Calcisols (3 %) covered nearly 98 % of
the total land area of the country, while minor coverage of
other RSGs (Solonchaks, Arenosols, Regosols, Andosols,
Alisols, Solonetzs, Planosols, Acrisols, Lixisols, Phaeozems,
and Gleysols) was also detected in some areas. Compared
with the existing soil resource map, the coverage of the first
three major soil groups has substantially increased, which is
related to the increased availability of soil profile data cover-
ing larger areas of the country, implying that these soils were
previously underestimated. Cambisols and Vertisols which
together represent nearly half of the total land area are rel-
atively young with inherent fertility, suggesting a high agri-
cultural potential for the country. However, given their limi-
tations, these and the other soil types require the implementa-
tion of suitable land, water, and crop management techniques
to sustainably exploit their potential.

The EthioSoilGrids version 1.0 product from this first
countrywide RSGs modeling effort requires complementary
activities. These include modeling and mapping that should
go beyond RSGs and need to include second-level classifica-
tions including principal and supplementary qualifiers. Fur-
thermore, a soil atlas of Ethiopia with details of the soil
physicochemical properties needs to be prepared together
with the map, which the authors and/or others responsible
need to prioritize in their future research endeavors.
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Appendix A: Legacy soil profile data distribution

Table A1. Distribution of legacy soil profile data by agroecology zones.

Major agroecological zones AEZ area Profiles
coverage (%)a observation (%)b

Warm arid lowland plains 19.76 3.40
Warm moist lowlands 15.12 10.74
Hot arid lowland plains 10.79 2.44
Warm sub-moist lowlands 9.63 6.94
Tepid moist mid highlands 8.05 20.21
Warm sub-humid lowlands 7.11 5.69
Tepid sub-humid mid highlands 6.63 15.26
Tepid sub-moist mid highlands 5.17 12.39
Warm semi-arid lowlands 2.75 3.23
Tepid humid mid highlands 2.65 2.48
Warm humid lowlands 2.29 0.45
Cool moist mid highlands 1.74 4.15
Hot sub-humid lowlands 1.67 0.07
Cool sub-moist mid highlands 1.16 3.00
Cool humid mid highlands 0.82 1.01
Warm per-humid lowlands 0.68 0.01
Hot moist lowlands 0.59 3.56
Hot sub-moist lowlands 0.56 0.03
Cool sub-humid mid highlands 0.52 1.38
Tepid arid mid highlands 0.43 0.39
Hot semi-arid lowlands 0.40 2.05
Tepid semi-arid mid highlands 0.19 0.67
Cold moist sub-afro-alpine to afro-alpine 0.07 0.16
Cold sub-moist mid highlands 0.07 0.04
Cold sub-humid sub-afro-alpine to afro-alpine 0.06 0.03
Cold humid sub-afro-alpine to afro-alpine 0.06 0.01
Very cold humid sub-afro-alpine 0.04 0.02
Very cold sub-moist mid highlands 0.02 0.02
Very cold moist sub-afro-alpine to afro-alpine 0.01 0.03
Hot per-humid lowlands 0.01 0.15
Tepid perhumid mid highland 0.13 0
Very cold sub-humid sub-afro-alpine to afro-alpine 0.03 0

Note: a total area of Ethiopia 1.14× 106 km2; b total number of profiles 14 681.

SOIL, 10, 189–209, 2024 https://doi.org/10.5194/soil-10-189-2024



A. Ali et al.: EthioSoilGrids 1.0 203

Appendix B: Environmental covariates

Table B1. List, description, spatial and temporal extent, and source of covariates used in modeling the reference soil groups.

Categories Covariates Descriptions Spatial Temporal Source
resolution resolution

Climate prep Precipitation 4 km 1981–2016 ENACTS (Dinku et al., 2014)

prep_sd Standard deviation of
precipitation

4 km 1981–2016 Derived from ENACTS (Dinku et
al., 2014)

tmax Maximum temperature 4 km 1983–2016 ENACTS (Dinku et al., 2014)

tmin Minimum temperature 4 km 1983–2016 ENACTS (Dinku et al., 2014)

trange Temperature range 4 km 1983–2016 ENACTS (Dinku et al., 2014)

tav_sd Standard deviation of average
temperature

4 km 1983–2016 Derived from ENACTS (Dinku et
al., 2014)

pet Potential evapotranspiration 4 km 1981–2016 Derived from ENACTS (Dinku et
al., 2014) using modified Penman
method

lstd Land surface temperature–day
(Aqua MODIS-MYD11A2, time
series monthly average)

1000 m 2002–2018 AfSISa

lstn Land surface temperature–night
(Aqua MODIS-MYD11A2, time
series monthly average)

1000 m 2002–2018 AfSIS

soil_moist Soil moisture (derived from one-
dimensional soil water balance)

4 km 1981–2016 Ethiopian Digital AgroClimate
Advisory Platform (EDACaP)

soil_temp Soil temperature 30 km 1979–2019 ERA 5-Reanalysis ECMWF
datab

Topography DEM Digital elevation model
(Elevation)

90 m – SRTM-DEM (Vågen, 2010)

twi Topographic wetness index 90 m – SAGA GIS-based
SRTM-DEM derivative

aspect Topographic aspect 90 m – SAGA GIS-based
SRTM-DEM derivative

curv Topographic curvature 90 m – SAGA GIS-based
SRTM-DEM derivative

conv Topographic convergence index 90 m – SAGA GIS-based
SRTM-DEM derivative

ls Slope length and steepness
factor (ls_factor)

90 m – SAGA GIS-based
SRTM-DEM derivative

morph Terrain morphometry 90 m – SAGA GIS-based
SRTM-DEM derivative

mrvbf Multiresolution index of valley
bottom flatness

90 m – SAGA GIS-based
SRTM-DEM derivative

slope Slope class (%) 90 m – SAGA GIS-based
SRTM-DEM derivative
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Table B1. Continued.

Categories Covariates Descriptions Spatial Temporal Source
resolution resolution

Vegetation ndvi Normalized difference
vegetation index (NDVI)
(MODIS-MODIS MOD13Q1,
time series monthly average)

250 m 2000–2021 AfSISa

evi Enhanced vegetation index
(EVI) (MODIS-MODIS
MOD13Q1, time series
monthly average)

250 m 2000–2021 AfSIS

lulc Land use/landcover 30 m 2010 Water and land resource
Center–Addis Ababa University
(WLRC-AAU, 2018)

parent
material

lithology Geology/parent material 1 : 2 000 000 1996 The Ethiopian Geological Survey
(Tefera et al., 1996)

MODIS
spectral
reflectance

ref1 Red band (MODIS-MODIS
MOD13Q1, time series monthly
average)

250 m 2000–2018 AfSISa

ref2 Near-infrared (MODIS-MODIS
MOD13Q1, time series monthly
average)

250 m 2000–2018 AfSIS

ref7 Mid-infrared (MODIS-MODIS
MOD13Q1, time series monthly
average)

250 m 2000–2018 AfSIS

a Africa Soil Information Service (AfSIS). b Fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate.

Appendix C: Probability of occurrence of reference
soil groups

Figure C1. Occurrence probability maps of Cambisols, Leptosols, Vertisols, and Fluvisols.
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Figure C2. Occurrence probability maps of Nitisols, Luvisols, and Calcisols.

Data availability. Full data will be available upon request based
on the CoW guideline (CoW, 2020; https://ethioagridata.com/, last
access: 7 November 2023) and the MoA “Soil and Agronomy Data
Management, Use and Sharing” directive No. 974/2023 Ethiopia
(https://nsis.moa.gov.et/, last access: 7 November 2023).
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Wright, M. N., Geng, X., Bauer-Marschallinger, B., Gue-
vara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,
Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil informa-
tion based on machine learning, PloS one, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.

Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and
Gräler, B.: Random forest as a generic framework for predic-
tive modeling of spatial and spatio-temporal variables, PeerJ, 6,
e5518, https://doi.org/10.7717/peerj.5518, 2018.

Hengl, T., Miller, M., Križan, J., Shepherd, K. D., Sila, A.,
Kilibarda, M., Antonijevi´c, O., Glušica, L., Dobermann, A.,
Haefele, S. M., McGrath, S. P., Acquah, G. E., Collinson,
J., Parente, L., Sheykhmousa, M., Saito, K., Johnson, J. M.,
Chamberlin, J., Silatsa, F., Yemefack, M., Wendt, J., MacMil-
lan, R. A., Wheeler, I., and Crouch, J.: African soil prop-
erties and nutrients mapped at 30 m spatial resolution using
two-scale ensemble machine learning, Sci. Rep., 11, 6130,
https://doi.org/10.1038/s41598-021-85639-y, 2021.

Heung, B., Hung, C. H., Zhang, J., Knudby, A., Bulmer, C. E.,
and Schmidt, M. G.: An overview and comparison of machine-
learning techniques for classification purposes in digital soil
mapping, Geoderma, 265, 62–77, 2016.

Hounkpatin, K. O. L., Schmidt, K., Stumpf, F., Forkuor, G.,
Behrens, T., Scholten, T., Amelung, W., and Welp, G.: Pre-
dicting reference soil groups using legacy data: A data
pruning and Random Forest approach for tropical environ-
ment (Dano catchment, Burkina Faso), Sci. Rep., 8, 9959,
https://doi.org/10.1038/s41598-018-28244-w, 2018.

Hurni, H.: Agro-ecological Belts of Ethiopia: Explanatory Notes on
three maps at a scale of 1 : 1,000,000, Soil Cons. Res. Pro., Uni-
versity of Bern, (Switzerland) in Association with the Ministry
of Agriculture, Addis Ababa, https://edepot.wur.nl/484855 (last
access: 6 June 2021), 1998.

Iticha, B. and Chalsissa, T.: Digital soil mapping for site-
specific management of soils, Geoderma, 351, 85–91,
https://doi.org/10.1016/j.geoderma.2019.05.026, 2019.

IUSS WRB (IUSS Working Group): World Reference Base for
Soil Resources 2014, update 2015 International soil classifi-
cation system for naming soils and creating legends for soil

https://doi.org/10.5194/soil-10-189-2024 SOIL, 10, 189–209, 2024

https://hdl.handle.net/10568/107988
https://hdl.handle.net/10568/107988
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1186/2194-6434-1-15
https://edepot.wur.nl/82729
https://library.wur.nl/WebQuery/isric/2259099
https://gert-jan.steeneveld.wur.nl/enyewsteeneveld2014.pdf
https://gert-jan.steeneveld.wur.nl/enyewsteeneveld2014.pdf
https://doi.org/10.1017/S0014479721000235
https://www.fao.org/3/ar767e/ar767e.pdf
https://www.fao.org/3/ar767e/ar767e.pdf
https://www.fao.org/publications/card/en/c/903943c7-f56a-521a-8d32-459e7e0cdae9/
https://www.fao.org/publications/card/en/c/903943c7-f56a-521a-8d32-459e7e0cdae9/
https://doi.org/10.1007/978-94-017-8026-1_3
https://doi.org/10.1007/978-94-017-8026-1_3
https://soilmapper.org/
https://soilmapper.org/
https://doi.org/10.1371/journal.pone.0125814
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.7717/peerj.5518
https://doi.org/10.1038/s41598-021-85639-y
https://doi.org/10.1038/s41598-018-28244-w
https://edepot.wur.nl/484855
https://doi.org/10.1016/j.geoderma.2019.05.026


208 A. Ali et al.: EthioSoilGrids 1.0

maps, World Soil Resources Reports No. 106, FAO, Rome, https:
//www.fao.org/3/i3794en/I3794en.pdf (last access: 11 February
2019), 2015.

Kempen, B., Brus, D. J., Heuvelink, G. B. M., and Stoorvogel, J. J.:
Updating the 1 : 50,000 Dutch soil map using legacy soil data: A
multinomial logistic regression approach, Geoderma, 151, 311–
326, https://doi.org/10.1016/j.geoderma.2009.04.023, 2009.

Kempen, B., Brus, D. J., Stoorvogel, J. J., Heuvelink, G. B. M., and
de Vries, F.: Efficiency comparison of conventional and digital
soil mapping for updating soil maps, Soil Sci. Soc. Am. J., 76,
2097–2115, https://doi.org/10.2136/sssaj2011.0424, 2012.

Kuhn, M.: Building predictive Models in R using the caret package,
J. Stat. Softw., 28, 1–26, https://doi.org/10.18637/jss.v028.i05,
2008.

Leenaars, J. G. B., van Oostrum, A. J. M., and Ruiperez, G. M.:
Africa Soil Profiles Database, Version 1.2. A compilation of
georeferenced and standardised legacy soil profile data for Sub-
Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil
Information Service (AfSIS) project and ISRIC – World Soil
Information, Wageningen, https://library.wur.nl/WebQuery/isric/
2259472 (last access: 7 August 2023), 2014.

Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-
González, M., and Kempen, B.: Mapping the ma-
jor soil-landscape resources of the Ethiopian High-
lands using random forest, Geoderma, 361, 114067,
https://doi.org/10.1016/j.geoderma.2019.114067, 2020a.

Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and
Mantel, S.: Semi-detailed soil resource survey and mapping of
REALISE woredas in Ethiopia, Project report to the BENEFIT-
REALISE programme, December 2020, ISRIC – World Soil In-
formation, Wageningen, The Netherlands, https://www.isric.org/
projects/realise-survey-and-mapping-soil-resources (last access:
18 October 2021), 2020b.

McBratney, A. B., Santos, M. M., and Minasny, B.: On digital soil
mapping, Geoderma, 117, 3–52, 2003.

Mesfin, A.: Nature and Management of Ethiopian Soils, 272 pp.,
Alamaya University of Agriculture, Alamaya, Ethiopia, 1998.

Mishra, B. B., Gebrekidan, H., and Kibret, K.: Soils of Ethiopia:
Perception, appraisal and constraints in relation to food secu-
rity, International journal of food, agriculture and environment,
2, 269–279, 2004.

Mitiku, H.: Genesis, characteristic and classification of the Central
Highland soils of Ethiopia, PhD Thesis, 399 pp., State University
of Ghent, Belgium, 1987.

Mohammed, A. and Belay, T.: Characteristics and classification
of the soils of the Plateau of Simen Mountains National Park
(SMNP), Ethiopia, SINET, 31, 89–102, 2008.

Mohammed, A. and Solomon, T.: Characteristics and fertility qual-
ity of the irrigated soils of Sheneka, Ethiopia, Ethiopian Journal
of Natural Resources, 12, 1–22, 2012.

Mulder, V. L., Lacoste, M., Richer de Forges, A. C., and Arrouays,
D.: GlobalSoilMap France: high resolution spatial modelling the
soils of France up to two meter depth, Sci. Total Environ., 573,
1352–1369, 2016.

Mulualem, A., Gobezie, T. B., Kasahun, B., and Demese, M.:
Recent Developments in Soil Fertility Mapping and Fertilizer
Advisory Services in Ethiopia, A Position Paper, https://www.
researchgate.net/publication/327764748/ (last access: 7 October
2021), 2018.

Mulugeta, T., Seid, A., Kefyialew, T., Mulugeta, F., and Tadla, G.:
Characterization and Classification of Soils of Askate Subwater-
shed, Northeastern Ethiopia, Agri. For. Fisheries, 10, 112–122,
https://doi.org/10.11648/j.aff.20211003.13, 2021.

Nyssen, J., Tielens, S., Tesfamichael, G., Tigist, A., Kassa,
T., Wauw, J., Degeyndt, K., Descheemaeker, K., Kassa,
A., Mitiku, H., and Amanuel, Z.: Understanding spatial
patterns of soils for sustainable agriculture in northern
Ethiopia’s tropical mountains, PLoS ONE, 14, e0224041,
https://doi.org/10.1371/journal.pone.0224041, 2019.

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M.,
Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: pro-
ducing soil information for the globe with quantified spatial un-
certainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-
2021, 2021.

QGIS Development Team: QGIS Geographic Information System,
Open Source Geospatial Foundation Project, https://qgis.org/en/
site/ (last access: 17 August 2021), 2021.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, http:
//www.R-project.org/ (last access: 14 September 2021), 2020.

Rossiter, D. G., Poggio, L., Beaudette, D., and Libohova, Z.:
How well does digital soil mapping represent soil geogra-
phy? An investigation from the USA, SOIL, 8, 559–586,
https://doi.org/10.5194/soil-8-559-2022, 2022.

Sheleme, B.: Topographic positions and land use impacted soil
properties along Humbo Larena-Ofa Sere toposequence, South-
ern Ethiopia, Journal of Soil Science and Environmental Man-
agement, 8, 135–147, https://doi.org/10.5897/JSSEM2017.0643,
2017.

Shi, J., Yang, L., Zhu, A.-X., Qin, C., Liang, P., Zeng,
C., and Pei, T.: Machine-Learning Variables at Different
Scales vs. Knowledge-based Variables for Mapping Multi-
ple Soil Properties, Soil Sci. Soc. Am. J., 82, 645–656,
https://doi.org/10.2136/sssaj2017.11.0392, 2018.

Shimeles, D., Mohamed, A., and Abayneh, E.: Characteristics and
classification of the soils of Tenocha Wenchacher Micro catch-
ment, South west Shewa, Ethiopia, Ethiopian Journal of Natural
Resources, 9, 37–62, 2007.

Soil Science Division Staff: Soil survey manual, edited by:
Ditzler, C., Scheffe, K., and Monger, H. C., USDA Hand-
book 18, Government Printing Office, Washington, D.C.,
USA, https://www.nrcs.usda.gov/sites/default/files/2022-09/
The-Soil-Survey-Manual.pdf (last access: 6 October 2020),
2017.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and
Feuston, B. P.: Random forest: a classification and regression tool
for compound classification and QSAR modeling, J. Chem. Inf.
Comp. Sci., 43, 1947–1958, https://doi.org/10.1021/ci034160g,
2003.

Tamene, L., Erkossa, T., Tafesse, T., Abera, W., and Schultz, S.:
A coalition of the willing powering data-driven solutions for
Ethiopian agriculture, CIAT Publication No. 518, CIAT, Addis
Ababa, Ethiopia, 2021.

Tamene, L. D., Amede, T., Kihara, J., Tibebe, D., and Schulz, S.: A
review of soil fertility management and crop response to fertil-
izer application in Ethiopia: towards development of site- and
context-specific fertilizer recommendation, CIAT Publication
No. 443, International Center for Tropical Agriculture (CIAT),

SOIL, 10, 189–209, 2024 https://doi.org/10.5194/soil-10-189-2024

https://www.fao.org/3/i3794en/I3794en.pdf
https://www.fao.org/3/i3794en/I3794en.pdf
https://doi.org/10.1016/j.geoderma.2009.04.023
https://doi.org/10.2136/sssaj2011.0424
https://doi.org/10.18637/jss.v028.i05
https://library.wur.nl/WebQuery/isric/2259472
https://library.wur.nl/WebQuery/isric/2259472
https://doi.org/10.1016/j.geoderma.2019.114067
https://www.isric.org/projects/realise-survey-and-mapping-soil-resources
https://www.isric.org/projects/realise-survey-and-mapping-soil-resources
https://www.researchgate.net/publication/327764748/
https://www.researchgate.net/publication/327764748/
https://doi.org/10.11648/j.aff.20211003.13
https://doi.org/10.1371/journal.pone.0224041
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/soil-7-217-2021
https://qgis.org/en/site/
https://qgis.org/en/site/
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.5194/soil-8-559-2022
https://doi.org/10.5897/JSSEM2017.0643
https://doi.org/10.2136/sssaj2017.11.0392
https://www.nrcs.usda.gov/sites/default/files/2022-09/The-Soil-Survey-Manual.pdf
https://www.nrcs.usda.gov/sites/default/files/2022-09/The-Soil-Survey-Manual.pdf
https://doi.org/10.1021/ci034160g


A. Ali et al.: EthioSoilGrids 1.0 209

Addis Ababa, Ethiopia, https://hdl.handle.net/10568/82996 (last
access: 17 July 2021), 2017.

Tefera, M., Chernet, T., and Workineh, H.: Geological Map of
Ethiopia, Addis Ababa, Ethiopia: Federal Democratic Republic
of Ethiopia, Ministry of Mines and Energy, Ethiopian Institute of
Geological Surveys, Addis Ababa, Ethiopia, 1996.

Tolossa, A. R.: Vertic Planosols in the Highlands of South-Western
Ethiopia: Genesis, Characteristics and Use, Ghent University,
Faculty of Sciences, Ghent, Belgium, http://hdl.handle.net/1854/
LU-5991501 (last access: 23 June 2021), 2015.

Vågen, T. G.: Africa Soil Information Service: Hydrologically Cor-
rected/Adjusted SRTM DEM (AfrHySRTM), International Cen-
ter for Tropical Agriculture – Tropical Soil Biology and Fertil-
ity Institute (CIAT-TSBF), World Agroforestry Centre (ICRAF),
Center for International Earth Science Information Network
(CIESIN), Columbia University, https://cmr.earthdata.nasa.gov/
search/concepts/C1214155420-SCIOPS (last access: 18 Febru-
ary 2021), 2010.

Van de Wauw, J., Baert, G., Moeyersons, J., Nyssen, J., De Geyndt,
K., Nurhussen, T., Amanauel, A., Poesen, J., and Deckers, J.:
Soil-landscape relationships in the basalt-dominated highlands
of Tigay, Ethiopia, Catena, 75, 117–127, 2008.

Virgo, K. J. and Munro, R. N.: Soil and erosion features of the Cen-
tral Plateau region of Tigrai, Ethiopia, Geoderma, 20, 131–157,
1978.

Wadoux, A. M. J. C., Minasny, B., and McBratney, A. B.: Ma-
chine learning for digital soil mapping: Applications, chal-
lenges and suggested solutions, Earth Sci. Rev., 210, 103359,
https://doi.org/10.31223/osf.io/8eq6s, 2020.

Westphal, E.: Agricultural Systems in Ethiopia, Agricultural Re-
search Report 826, https://edepot.wur.nl/361350 (last access: 19
March 2021), 1975.

WLRC-AAU (Water and Land Resource Centre-Addis Ababa Uni-
versity): Land use/land cover mapping, change detection and
characterization of Ethiopia, Water Land Resource Centre, Ad-
dis Ababa University, Addis Ababa, Ethiopia, 2018.

Wright, M. N. and Ziegler, A.: Ranger: A fast implementation of
random forests for high dimensional data in C++ and R, J. Stat.
Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01, 2017.

Zwedie, E.: Selected physical, chemical, and mineralogical charac-
teristics of major soils occurring in Chercher highlands, Eastern
Ethiopia, Ethiopian Journal of Natural Resources, 1, 173–185,
1999.

Zewdie, E.: Properties of major Agricultural Soils of Ethiopia, Lam-
bert Academic Publishing, Germany, 2013.

https://doi.org/10.5194/soil-10-189-2024 SOIL, 10, 189–209, 2024

https://hdl.handle.net/10568/82996
http://hdl.handle.net/1854/LU-5991501
http://hdl.handle.net/1854/LU-5991501
https://cmr.earthdata.nasa.gov/search/concepts/C1214155420-SCIOPS
https://cmr.earthdata.nasa.gov/search/concepts/C1214155420-SCIOPS
https://doi.org/10.31223/osf.io/8eq6s
https://edepot.wur.nl/361350
https://doi.org/10.18637/jss.v077.i01

	Abstract
	Introduction
	Methods
	The study area
	Legacy soil profile data collation and preparation
	Preparation and selection of environmental covariates
	Covariate acquisition and preparation
	Covariate selection

	Modeling and mapping soil types or reference soil groups
	Model tuning and quantitative evaluation
	Software and computational framework
	Expert evaluation of spatial patterns of the beta-version soil map


	Results and discussion
	Soil profile datasets
	Modeling and mapping
	Variable importance
	Model performance
	Modeling and mapping: EthioSoilGrids version 1.0

	Expert validation of the soil map
	Evaluation of results, limitations, and future direction

	Conclusions
	Appendix A: Legacy soil profile data distribution
	Appendix B: Environmental covariates
	Appendix C: Probability of occurrence of reference soil groups
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

