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Abstract. In a context of accelerated soil erosion and sediment supply to water bodies, sediment fingerprinting
techniques have received an increasing interest in the last 2 decades. The selection of tracers is a particularly
critical step for the subsequent accurate prediction of sediment source contributions. To select tracers, the most
conventional approach is the three-step method, although, more recently, the consensus method has also been
proposed as an alternative. The outputs of these two approaches were compared in terms of identification of
conservative properties, tracer selection, modelled contributions and performance on a single dataset. As for the
three-step method, several range test criteria were compared, along with the impact of the discriminant function
analysis (DFA).

The dataset was composed of tracer properties analysed in soil (three potential sources; n =56) and sedi-
ment core samples (n =32). Soil and sediment samples were sieved to 63 um and analysed for organic matter,
elemental geochemistry and diffuse visible spectrometry. Virtual mixtures (n = 138) with known source propor-
tions were generated to assess model accuracy of each tracer selection method. The Bayesian un-mixing model
MixSIAR was then used to predict source contributions on both virtual mixtures and actual sediments.

The different methods tested in the current research can be distributed into three groups according to their
sensitivity to the conservative behaviour of properties, which was found to be associated with different predicted
source contribution tendencies along the sediment core. The methods selecting the largest number of tracers were
associated with a dominant and constant contribution of forests to sediment. In contrast, the methods selecting
the lowest number of tracers were associated with a dominant and constant contribution of cropland to sediment.
Furthermore, the intermediate selection of tracers led to more balanced contributions of both cropland and forest
to sediments.

The prediction of the virtual mixtures allowed us to compute several evaluation metrics, which are generally
used to support the evaluation of model accuracy for each tracer selection method. However, strong differences or
the absence of correspondence were observed between the range of predicted contributions obtained for virtual
mixtures and those values obtained for actual sediments. These divergences highlight the fact that evaluation
metrics obtained for virtual mixtures may not be directly transferable to models run for actual samples and must
be interpreted with caution to avoid over-interpretation or misinterpretation. These divergences may likely be
attributed to the occurrence of a not (fully) conservative behaviour of potential tracer properties during erosion,
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transport and deposition processes, which could not be fully reproduced when generating the virtual mixtures

with currently available methods.

Future research should develop novel metrics to quantify the conservative behaviour of tracer properties during
erosion and transport processes. Furthermore, new methods should be designed to generate virtual mixtures
closer to reality and to better evaluate model accuracy. These improvements would contribute to the development
of more reliable sediment fingerprinting techniques, which are needed to better support the implementation of
effective soil and water conservation measures at the catchment scale.

1 Introduction

During the last several decades, an acceleration of soil ero-
sion has been observed in response to land use changes
or farming-practice modifications in several regions around
the world (Poesen, 2018; Pennock, 2019). Moreover, global
warming will likely further increase the frequency of ero-
sive storms and the associated soil losses (OCC, 2015; Li
and Fang, 2016). This acceleration of soil erosion leads to an
increase of on-site and off-site negative socio-environmental
impacts (Lal, 1998, 2001), including the deterioration of
soil agronomic properties (Pimentel, 2006; Montgomery,
2007), the transfer of pollutants associated with soil parti-
cles (e.g. pesticides, herbicides, chemical fertilisers, heavy
metals, radionuclides) (Lal, 1998; Bing et al., 2013; Deb-
nath et al., 2021), the alteration of soil organic carbon stocks
(Olson et al., 2016; Lal, 2019), the degradation of aquatic
ecosystems (e.g. eutrophication, increased turbidity) (Kemp
et al., 2011; Issaka and Ashraf, 2017) and an increased sed-
iment supply to waterbodies (e.g. reservoir and bay silta-
tion) (Collins et al., 2020). The identification of soil ero-
sion sources is therefore essential to prevent water-erosion-
induced land degradation and its associated effects.

The sediment source fingerprinting technique was initially
developed to determine the origin of sediment (Wall and
Wilding, 1976; Peart and Walling, 1986; Loughran et al.,
1987). After initial qualitative studies (Wall and Wilding,
1976; Loughran et al., 1987), the subsequent development
of quantitative un-mixing models (Peart and Walling, 1986;
Walling and Woodward, 1992; Collins et al., 1997a) made
it possible to estimate the contributions of different sources
to target sediment samples. Since then, the technique has re-
ceived increasing attention (Collins et al., 2020; Batista et al.,
2022). Overall, the goal of sediment tracing studies has been
to improve our understanding of sediment transfer processes
and to guide landscape management (Laceby et al., 2015;
Owens et al., 2016). However, in practice, the technique has
mainly been used by scientists as a research tool, and few di-
rect applications by landscape managers have been reported
(Minella et al., 2008; Collins et al., 2020; Xu et al., 2022).
This likely demonstrates that, despite some homogenisation
and simplification efforts (Mukundan et al., 2012; Collins
et al., 2017; Evrard et al., 2022), the technique remains too
complex, and the development of simpler and more robust
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procedures would allow for its wider application (Xu et al.,
2022).

In the last few years, there has been a renewed interest
among the sediment fingerprinting community in method-
ological issues associated with the technique, such as the
tracer selection methods (i.e. the identification of finger-
print properties suitable for source discrimination and appor-
tionment) (Collins and Walling, 2004; Laceby et al., 2017;
Collins et al., 2020; Evrard et al., 2022). This stems from
the large diversity of properties that are currently used in
sediment fingerprinting studies, e.g. radionuclides (Collins
et al., 1997b; Evrard et al., 2020a), elemental geochemistry
(Collins et al., 1997b; Blake et al., 2006; Laceby and OI-
ley, 2015), magnetic susceptibility (Lizaga et al., 2019), or-
ganic matter and stable isotopes (§'3C, §'°N) (Laceby et al.,
2016b; Huon et al., 2018). Collins et al. (2020) listed prop-
erties that have recently gained attention, such as compound-
specific stable isotopes (CSSIs) (Gibbs, 2008), environmen-
tal DNA (eDNA) (Evrard et al., 2019), the stable oxygen iso-
tope ratio with the oxygen isotopic composition of phosphate
(8'80,) (Mingus et al., 2019), and diffuse reflectance spec-
troscopy in the visible (Martinez-Carreras et al., 2010; Sum-
mers et al., 2011; Tiecher et al., 2015), near-infrared (Sum-
mers et al., 2011) or mid-infrared range (Brosinsky et al.,
2014; Farias Amorim et al., 2021). Theoretically, a larger
number of measured properties should raise the probability
of identifying robust tracers (Laceby et al., 2017; Collins
etal., 2020; Evrard et al., 2022). Indeed, tracer selection has a
fundamental impact on model predictions and their interpre-
tation (Laceby and Olley, 2015; Laceby et al., 2015; Gaspar
et al., 2019), as the inclusion of non-conservative properties
in models was shown to strongly decrease the overall model
quality (Sherriff et al., 2015; Smith et al., 2018; Vale et al.,
2022).

The most conventional approach of tracer selection is a
three-step method (TSM) (Collins et al., 2010; Wilkinson
et al., 2013; Laceby et al., 2015; Sherriff et al., 2015). The
first step assesses the conservative behaviour of each prop-
erty, and the second step determines their capacity to dis-
criminate between sources. The joint use of both tests allows
us to select tracers from a potentially wide suite of measured
properties. The third step of this approach consists of select-
ing optimal tracers for modelling.
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Conservative behaviour refers to the absence of changes
in the property between sources and targets. Sources cor-
respond to materials that may have contributed to the for-
mation of the target sediments (e.g. land uses, land covers,
river banks, roads, landslides). The nature of the target sedi-
ments can vary, as it may include material as different as lag
sediment, lake sediments, suspended matter, etc. The non-
conservative behaviour of a tracer can be mainly attributed
to two phenomena. The first is that particle size sorting may
occur along the transport pathway (Walling et al., 2000). Sed-
iment transport is a physical mechanism which, depending
on runoff magnitude, rainfall intensity, river discharge, and
other hydro-sedimentary components, will transport specific
particle size fractions, weights and compositions (i.e. mineral
or organic fractions) (Viparelli et al., 2013; Gateuille et al.,
2019). In general, the average size of particles decreases with
the distance travelled (Laceby et al., 2017). Fine particles
with a higher specific surface area are generally associated
with higher tracer concentrations than coarser material frac-
tions (Horowitze, 1991; Collins et al., 1997a). In order to re-
duce the impact of particle size sorting on sediment proper-
ties, the < 63 um fraction is commonly analysed after siev-
ing both source and target material to this threshold when
studying properties preferentially enriched in or sorbed onto
fine particles (i.e. clays or silts) (Collins et al., 1997a; Gellis
and Noe, 2013; Laceby et al., 2017) such as radionuclides,
heavy metals or pesticides (Collins et al., 2020; Evrard et al.,
2022). The second phenomenon is related to tracer concen-
tration changes due to biogeochemical processes occurring
during particle transport (Koiter et al., 2013). The changes
depend on how tracers are affected by biogeochemical pro-
cesses, such as dissolution, sorption, oxidation and reduction.
Highly reactive elements, such as Na, Ca and Mg, show a
high water-solubility and tend to dissolve when the sediment
is immersed. Other elements, such as Ti, Al and Si, are, in
contrast, less susceptible to react in changing conditions (i.e.
redox conditions), which makes them more suitable tracers
(Meybeck and Helmer, 1989; Phillips and Greenway, 1998).

To assess the conservative behaviour of the property, in
the first step of the TSM, the range of property values in
source and target samples are compared. The objective of the
range test is to assess whether the range of source values in-
cludes all individual target sediment sample values (Wilkin-
son et al., 2013). Various range tests based on source group
statistics are commonly used in the literature: minimum-—
maximum (Smith and Blake, 2014; Sellier et al., 2021),
minimum—maximum = 10 % (as measurement error) (Gellis
and Noe, 2013; Gellis and Gorman Sanisaca, 2018; Dabrin
et al., 2021), boxplot examination (whiskers and hinge box)
(Sellier et al., 2020; Batista et al., 2022), mean (Wilkinson
et al., 2013; Nosrati et al., 2021), mean plus/minus standard
deviation (SD) (Evrard et al., 2020b; Laceby et al., 2021)
and median (Collins et al., 2013; Batista et al., 2022). In
these range tests, the source property range is defined as
the highest and lowest values of the chosen statistics among
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the source groups. However, range tests do not quantify or
confirm the complete absence of non-conservative behaviour
(Collins et al., 2017; Sherriff et al., 2015).

The property’s ability to differentiate between sources,
originally proposed by Collins et al. (1997b), determines
whether a property is a discriminant tracer or not. This sec-
ond step of the TSM allows for the selection of tracers that
maximise source discrimination. To assess the discrimina-
tion power of a given property, the conventional tracer selec-
tion approach relies on the non-parametric Kruskal-Wallis
H test (Hollander et al., 2013). The result of the Kruskal—
Wallis H test indicates that at least one of the groups dif-
fers from the other for a given property. Other tests, such
as Dunn’s, Mann—Whitney U or Kolmogorov—Smirnov tests,
can be used to determine the discriminatory power of a given
property for each individual source (e.g. forest versus crop-
land versus subsoil).

Conventionally, after assessing the tracer’s conservative
behaviour and discrimination capacity, the third step of the
TSM is to conduct a discriminant function analysis (DFA)
or a principal component analysis (PCA). When applying
the DFA, a subset of tracers is selected using a forward
stepwise selection procedure based on Wilk’s lambda cri-
terion (Collins et al., 1997b). This step aims at selecting
the lowest number of tracers that maximises sample source
discrimination, in order to avoid selecting redundant tracers
(Small et al., 2004). However, this practice is currently de-
bated, as some authors argue that a higher number of tracers
can improve source dimensionality and definition, as well as
alleviate the impact of non-conservative tracers (Martinez-
Carreras et al., 2008; Sherriff et al., 2015).

Another tracer selection method, the consensus method
(CM), was developed by Lizaga et al. (2020). It is based on
the information provided by single tracers in an un-mixing
context. The CM selects tracers combining the identifica-
tion of non-conservative behaviour and conflicting tracers.
It consists of two tests: the conservativeness index (CI) and
the consensus ranking (CR). The CI is based on the results
of the predictions from single-tracer models to identify non-
conservative and dissenting tracers, whereas the CR is a scor-
ing function based on debates aimed at discarding the prop-
erties that prevent consensus. The CI is applied to all target
sediment samples and provides unique results for the entire
study, whereas the CR is applied to each individual target
sediment sample, which may result in the selection of differ-
ent lists of tracers for different target samples.

Selected tracers are then used in un-mixing models to as-
sess the contribution of sources to the target samples. After
the use of simple (Peart and Walling, 1986) and quantita-
tive un-mixing models (Collins et al., 1997a), earlier mod-
elling approaches were based on deterministic optimisation
procedures (Walden et al., 1997), and, more recently, more
advanced approaches have moved towards stochastic proce-
dures using Bayesian and/or Monte Carlo methods (Small
et al., 2002; Martinez-Carreras et al., 2008; Nosrati et al.,
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2014; Laceby and Olley, 2015). In order to assess the over-
all reliability of the study, it is important to assess the pre-
dictive accuracy of the un-mixing models. Stochastic mod-
els produce a distribution of source contributions for which
a prediction interval can be determined, which provides an
indicator of modelling accuracy (Batista et al., 2022). The
use of artificial mixtures allows prediction accuracy to be as-
sessed in more diverse ways by using them as target mix-
tures with known contributions. It is then possible to calcu-
late various statistics to describe and evaluate the prediction
uncertainty. Although these mixtures were initially prepared
in the laboratory (Martinez-Carreras et al., 2010; Haddadchi
et al., 2014; Huangfu et al., 2020), the development of virtu-
ally generated mixtures (Laceby et al., 2015; Palazén et al.,
2015; Sherriff et al., 2015) appears as a relevant alternative
(Batista et al., 2022). However, when artificial mixtures are
produced, their properties are not affected by erosive pro-
cesses and are therefore perfectly conservative.

The objectives of the current study are therefore to
(1) compare the tracer selections given by the two approaches
(i.e. three-step method and consensus method), (2) assess the
impact of the stepwise selection on the TSM selections of
tracers, (3) evaluate the impact of these different selections
of tracers on sediment source apportionment prediction ac-
curacy using virtual mixtures and (4) draw general recom-
mendations from this evaluation for future sediment finger-
printing studies.

2 Materials and methods

2.1 Catchment description

The Hayama Lake catchment (84 km?), located in the up-
per part of the Mano River in northeastern Japan (Fukushima
Prefecture, Tohoku region), is a typical mountainous agri-
cultural catchment of the eastern edge of Fukushima Pre-
fecture. Due to the steep topography, cropland is located at
the bottom of valleys and in the vicinity of rivers, and it is
bordered by forest on steep mountainous hillslopes. Forestry
is the main land use, which covers 91 % of the catchment,
while cropland represents 7 % and urban settlements and bare
soil less than 2 % (Fig. 1 and Fig. B1 in Appendix B; data
are from JAXA, 2016, 2018, 2022). However, cropland is
located in places with a high hydro-sedimentary connectiv-
ity (Chartin et al., 2013). The Hayama Lake catchment area
is located within the main inland radioactive contamination
plume resulting from the Fukushima Daiichi Nuclear Power
Plant accident in March 2011 (Kato et al., 2019). Once de-
posited, '37Cs strongly and quasi-permanently binds to fine
soil particles such as silts and clays (Sawhney, 1972; He and
Walling, 1996), which has been confirmed in the soils of
Fukushima Prefecture (Saito et al., 2014; Nakao et al., 2014).

Catchment altitude ranges from 170 to 700 m above sea
level. The climate is continental (Dfa), with no dry season
and hot summer, and it is bordered to the east by a Cfa tem-
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perate climate with no dry season and hot summer accord-
ing to Koppen’s climatic classification (Beck et al., 2018).
The regional hydrological year runs from November to Oc-
tober (Laceby et al., 2016a; Whitaker et al., 2022). Over
the 2006 to 2021 period, the mean annual temperature was
13.6 £0.4°Cyr~! (standard deviation), with mean monthly
values ranging from —1.5°C in January to 31.1°C in Au-
gust. The mean annual precipitation was 12204189 mm yr~!
(SD), some of which falls as snow in winter. The majority
of precipitation occurs between June and October, represent-
ing 60 % of the annual rainfall and 86 % of the rainfall ero-
sivity (Laceby et al., 2016a). This period corresponds to the
Japanese typhoon season with a peak of intensity in Septem-
ber in Fukushima Prefecture. Major typhoons were shown to
be the main drivers of sediment production (Chartin et al.,
2017), as they can generate 40 % of the annual rainfall ero-
sivity within a very short period (Laceby et al., 2016a).

The Hayama Lake catchment is mainly underlain by non-
alkaline mafic volcanic rocks (42 %), granite (31 %) gran-
odiorite (17 %) and sedimentary rocks (7 %) (Fig. B2). Main
soil groups, according to the Comprehensive Soil Classifica-
tion System of Japan (Obara et al., 2011, 2015, and equiv-
alent soil types according to the World Reference Base for
Soil Resources (WRB)), are the following: Brown Forest
soils (37 %; WRB: Cambisols/Stagnosols), Allophanic An-
dosols (36 %; Silandic Andosols), Cambic Red-Yellow soils
(9 %; WRB: Cambisols) and Lithosols (9 %; WRB: Lep-
tosols) (Fig. B3) (data from NARO, 2011).

All maps and geographical processing were performed us-
ing the QGIS software (QGIS Development Team, 2022).

2.2 Soil and sediment sampling and processing

All sediment targets were taken from one sediment core sam-
pled on 8 June 2021 in the downstream part of Hayama Lake
(Mano dam lake) at 42 m depth (Fig. 1) by the National Insti-
tute of Environmental Studies (NIES) (Japan). The core was
38 cm long with a diameter of 11 cm. It was sectioned into
38 increments of 1 cm in order to achieve a high-resolution
investigation of the sediment core. A group of 32 layers were
selected for this study, from 6 to 38 cm depths, which corre-
sponds to a stable land use period (i.e. prior to decontamina-
tion work; Chalaux-Clergue et al., 2024). Sediment samples
were dried at 40 °C for 96 h.

Soil samples (n =56) were collected in areas representa-
tive of the main potential sediment sources to Hayama Lake,
including 24 cropland, 22 forest and 10 subsoil (i.e. channel
bank or landslide) samples. Some source soils were sampled
in the adjacent Niida River catchment, which is similar to
the Hayama Lake catchment. Particular care was taken to en-
sure that these samples were representative of the Hayama
Lake catchment characteristics, in terms of land use, geol-
ogy and pedology (see Figs. B1, B2 and B3) (Williamson
et al., 2023). The similarity of soil sample properties from
both catchments was tested using the Kolmogorov—Smirnov
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Figure 1. Map of the main land uses in the Hayama Lake catchment area over the 2014-2016 period with location of source samples and
the sediment core (cartographic data: GSI and JAXA). FDNPP: Fukushima Daiichi Nuclear Power Plant.

test (not shown). Soils were sampled with a plastic trowel
and consisted of 10 composited sub-samples of topsoil (1-
2 cm uppermost layer). All soil samples were dried at 40 °C
for about 48 h and then sieved to 63 pum to isolate the fraction
concentrating 137Cs (i.e. to silt and clay minerals (Sawhney,
1972; He and Walling, 1996)).

2.3 Laboratory analysis

Various analyses were conducted to characterise sediment
and soil properties: organic matter composition determined
by the combustion method (i.e. total organic carbon (TOC)
and total nitrogen (TN)), elemental geochemistry analysed
by X-ray fluorescence (XRF) for 17 elements (i.e. Al, Ca,
Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Si, Sr, Ti, Zn and Zr),
visible colour indices by diffuse reflectance (i.e. CIE Lab,
CIE LCh), geothite peak intensities (445 and 525 nm; Tiecher
et al., 2021), the ratio between the % reflectance at 700 and
400 nm (Q7/4; Debret et al., 2011) and iron oxide-associated
parameters (Al, A2, A3, Gt; Tiecher et al., 2015). All analy-
sis methods and calculations are described in Appendix C.

Only properties for which the measurement uncertainty is
too large were removed from further analysis. The follow-
ing criterion has been set: if obtaining, considering the mea-
surement uncertainty, a majority or the totality of the sample
values was virtually impossible (e.g. when the measurement
uncertainty is subtracted from the property measurement and
results in a negative value), then the corresponding property
was discarded.

2.4  Virtual mixtures

Virtual mixtures were generated in order to assess model pre-
diction accuracy (Palazén et al., 2015; Smith et al., 2018;
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Gaspar et al., 2019; Farias Amorim et al., 2021; Batista et al.,
2022). They were shown to provide a reliable alternative
to laboratory mixtures (Batista et al., 2022). Their ease of
generation allows the model to be evaluated under a wide
range of source contributions. For a given source, virtual
mixture contributions were designed to range from 0% to
100 %, with 5 % increments. The contributions of the other
sources to the mixtures were then determined as fractions
of the remaining contribution (i.e. 1 —source A contribu-
tion), the fractions being in turn determined by the number
of sources. The denominators were defined as (n — 1) - 2 with
n the number of source. The numerators were set to 3 and
1 as three sources were considered in the current research
(3/4 and 1/4). Theoretical source contributions for the vir-
tual mixtures were determined as follows:

Cy €{0,5,...,100},
(Ca. Cp. Co)=1Cp=(1—-Ca)- 573
Cc=(1—CA)'m,

6]

with C4, Cp and C¢ being the contributions of sources A, B
and C, and 7 is the number of sources.

Permutations were then determined following this contri-
bution scale, which generated a total of 138 virtual mixtures
for the three source groups. For every source group, the mean
and SD of each property were calculated. For each virtual
mixture, each source group mean value was multiplied by the
corresponding group contribution (e.g. cropland 0.40, for-
est 0.45, subsoil 0.15). Then, all source group values were
summed to provide the virtual mixture property value.

SOIL, 10, 109-138, 2024
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2.5 Tracer selection
2.5.1 Three-step method

The TSM (Mukundan et al., 2010; Sellier et al., 2020; Batista
et al., 2022) is based on three steps: (1) a range test to iden-
tify conservative properties (Martinez-Carreras et al., 2010;
Wilkinson et al., 2013; Gellis and Walling, 2013), (2) a
Kruskal-Wallis H test to identify discriminant properties
(Collins et al., 1997b), and then (3) a discriminant func-
tion analysis (DFA) or a principal component analysis (PCA)
with forward stepwise selection based on Wilk’s lambda cri-
terion to identify the best subset of predictors among the
identified tracers (i.e. conservative and discriminant proper-
ties) (Collins and Walling, 2002).

Conservative behaviour

The conservative behaviour of properties was assessed using
a range test. Within a range test, the range of sources is de-
fined as the highest and lowest values of a criterion of the
property among source groups. To be conservative, all the
sample property values should lie within the source range.

conservative if {sources lower bound < target value

< sources upper bound} 2

Several range test criteria are found in the literature,
and these were all applied to identify conservative prop-
erties as an alternative to the TSM: minimum-maximum
(Smith and Blake, 2014; Sellier et al., 2021), minimum-—
maximum =+ 10 % (as measurement error) (Gellis and Noe,
2013; Gellis and Gorman Sanisaca, 2018; Dabrin et al.,
2021), boxplot whiskers interpretation (i.e. outlier thresh-
olds) (Sellier et al., 2020) and boxplot hinge interpretation
(i.e. also referred to as interquartile range (IQR)) (Batista
et al., 2022), mean (Wilkinson et al., 2013; Nosrati et al.,
2021), mean plus/minus 1 standard deviation (mean =+ SD)
(Evrard et al., 2020b; Laceby et al., 2021), and median
(Collins et al., 2013; Batista et al., 2022) are detailed in Ta-
ble 1.

Discriminant power

The ability of the property to discriminate between source
groups is assessed using a Kruskal-Wallis H test (Hollan-
der et al., 2013). This is a non-parametric test that checks
whether two or more samples originate from the same distri-
bution, and it represents an extension of the Mann—Whitney
U test that compares two samples. The test hypotheses are
the following.

— The null hypothesis (Hp): the median across the three
groups are equal.

— The alternative hypothesis (Hj): at least one of the
group medians is different from the others.
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The test statistic is given by

ini(Fi —7)?
H=(N-D)-—— 3)
> Y@ —7)?
i=1j=1

with N being the total number of observations across all
groups, g the number of groups, n; the number of observa-
tions in group i, r;; the rank of observation j from group 7, 7;
the mean rank of all observations for group i and 7 the mean
of all r;;.

Kruskal-Wallis H tests were performed using the func-
tion kruskal.test from the stats package (R Team,
2022). For properties with a p value below o = 0.05, the null
hypothesis is rejected, which means that at least one of the
source groups is different from the others and that the prop-
erty is therefore discriminant.

Discriminant function analysis

A discriminant function analysis (DFA) stepwise selection
is carried out to identify a subset of predictors among
the identified tracers (Collins and Walling, 2002; Collins
et al., 2010). A forward stepwise variable selection based
on Wilk’s lambda criterion was performed using the func-
tion greedy .wilks from the k1aR package (Weihs et al.,
2023). The function first initiates a model with the variable
that discriminates groups. Then, the model is extended by
including other variables based on Wilk’s lambda criterion:
the one variable that minimises the Wilk’s lambda is only in-
cluded if the model’s p value remains statistically significant
after its inclusion. Wilk’s lambda statistic approaches zero
when the variability between groups is higher than the vari-
ability within each group; then this criterion maximises the
difference between groups. As the use of the DFA stepwise
selection has been criticised because some studies showed
that the use of a higher number of tracers decreases the sen-
sitivity of the results to non-conservative tracers (Martinez-
Carreras et al., 2008; Sherriff et al., 2015), we used the list
of identified tracers before (“no DFA”) and after the stepwise
selection procedure (“DFA”) in order to assess its potential
impact on the calculation of source contributions.

2.5.2 Consensus method

The approach by Lizaga et al. (2020) to select properties,
referred to as the consensus method (CM), is based on two
tests: the conservativeness index (CI) and the consensus
ranking (CR). In the CM, tracers are selected by identifying
non-conservative behaviour (using the CI test) and dissenting
tracers (CR test). The CI of each property is calculated for all
target samples simultaneously, while the CR is calculated for
each target sample independently. As a result, a set of trac-
ers is selected for each target sample. Tests were performed
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Table 1. Equations of the common range test criteria used in the literature to test the conservative behaviour in the three-step method (TSM).
s; is the source group i from 1 to n, the number of source groups; ¢; is the target sample j value with j from 1 to m, the number of samples;
and p is the mean and o is the standard deviation (SD). Symbol * indicates statistics calculated on log-transformed values.

Criterion Range test equation

Minimum-maximum
Minimum-maximum =+ 10 %

min(ming;) < 7; < max(maxs;)
min(ming; - 0.9) <¢; < max(maxg; - 1.1)

min(max(ming;, Oy, (0.25) — 1.5 IQRy,)) < #; < max(min(maxg;, Qs; (0.75) + 1.5IQRy;, ))

Hinge min(Qy; (0.25)) < t; < max(Qs;(0.75))
Whiskers

Mean rnin(p,;*[_) <t; < max(uﬁ,)

Mean £ SD min(ujl, - a;;) <t; < max(u*s; + o;j)
Median min(mediany,; ) < ; < max(mediany;)

using the 1.3 version of FingerPro (Lizaga et al., 2022)
under the R ver. 4.1.2 (R Team, 2021) environment.

Conservativeness index

The CI quantifies how conservative a property is based on
the result of a single-tracer model. To be considered conser-
vative, the CI should be strictly equal to 0. A single-tracer
model is a standard linear un-mixing model with only one
true analysed property and n — 2 virtual properties (n the
number of source groups). The model is solved to obtain the
source contributions. This process is repeated 2000 times,
which creates a distribution of predictions. The prediction
couples (i.e. wy, wa, ..., w,) are sorted according to the Eu-
clidean distance to a perfectly balanced mixture (i.e. 1/n). A
percentile of the sorted prediction couple is chosen to com-
pute the CI as the root mean square error (RMSE) of the non-
conservative part (nc) of the contribution, as follows:

n 1 2
Cl=- E (nc(w,)——) ; with
' n

j=1

—w ifw <0,
ifoswc<l, “4)

ifw>1,

nc(w) = 30

w—1

with w; being of the jth source group predicted contribu-
tion of the selected percentile, and # is the number of source
groups.

A property is considered conservative if the CI values are
strictly equal to zero.

Consensus ranking

CR is an index that quantifies the relevance of each property
for the prediction based on a debate agreement for a single
target sample. In each debate, a subset of n + 1 randomly
selected properties is built, and several rounds of debates are
performed excluding one property each time. The consensus
of each debate is measured through the quality of the mass
balance equations. When the exclusion of a property leads to
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an increase of the subset consensus score (i.e. higher RMSE
of the mass balance equations), the property is considered
dissenting and “lost a debate”. The CR of a property is the
ratio between the number of attended debates (set at 2000)
and the number of lost debates, and it is calculated as follows:

®)

1
CR:lOO(l— ost debates )

attended debates

Properties with a CR score above a certain threshold are
considered relevant and are selected. Lizaga et al. (2020) rec-
ommended to select properties with a CR score above 70.

2.6 Source contribution modelling
2.6.1  Un-mixing model

An un-mixing model was run on actual sediment samples
and virtual mixtures using the tracers selected by the TSM
without and with DFA and the CM. To do so, the widely
used Bayesian un-mixing model MixSIAR was employed
using the R package MixSIAR (Stock et al., 2020, ver.
3.1.12) with JAGS (Stock et al., 2022, ver. 4.3.1) (Collins
et al., 2020; Evrard et al., 2022; Lizaga et al., 2020; Batista
et al., 2022). To quantify the contributions of n sources,
the model requires n — 1 tracers. The model was run with
a “long” Markov Chain Monte Carlo sampling algorithm
(i.e. chain length =300000, burn-in =200 000, thin =100
and chains = 3) with a process error structure. Model conver-
gence was determined by the Gelman—Rubin diagnostic us-
ing the output_JAGS function from the MixSIAR pack-
age, and none of the tracer selection approaches tested had a
value greater than 1.05. The median value of the distribution
predicted by MixSIAR was reported as the source contribu-
tion for each sediment target and virtual mixture.

2.6.2 Accuracy assessment

For each tracer selection approach, MixSIAR prediction ac-
curacy was assessed using virtual mixture contribution pre-
dictions, for which theoretical source contributions were
known a priori. Each model’s prediction accuracy was evalu-
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ated based on different criteria: uncertainty (prediction inter-
val width (W50)), residual error or bias (mean error (ME)),
performance (squared Pearson correlation coefficient ")),
root-mean-square error (RMSE), Nash—Sutcliffe modelling
efficiency coefficient (NSE), and continuous ranked proba-
bility score (CRPS). A summary of the metrics, with their
formula, unit, range and ideal values, is provided in Table 2
(Matheson and Winkler, 1976; Bennett et al., 2013; Batista
et al., 2022).

Higher values of W50 indicate a wider distribution, which
is related to a higher uncertainty. The sign of the ME indi-
cates the direction of the bias, i.e. an overestimation or un-
derestimation (positive or negative value, respectively). As
ME is affected by cancellation, a ME of zero can also re-
flect a balanced distribution of predictions around the 1:1
line. Although this is not a bias, it does not mean that the
model outputs are devoid of errors. The RMSE is a mea-
sure of the accuracy and allows us to calculate prediction
errors of different models for a particular dataset. RMSE is
always positive, and its ideal value is zero, which indicates
a perfect fit to the data. As RMSE depends on the squared
error, it is sensitive to outliers. The r2 describes how lin-
ear the prediction is. The NSE indicates the magnitude of
variance explained by the model, i.e. how well the predic-
tions match with the observations. A negative RMSE indi-
cates that the mean of the measured values provides a bet-
ter predictor than the model. The joint use of r> and NSE
allows for a better appreciation of the distribution shape of
predictions and thus facilitates the understanding of the na-
ture of model prediction errors. The CRPS evaluates both the
accuracy and sharpness (i.e. precision) of a distribution of
predicted continuous values from a probabilistic model for
each sample (Matheson and Winkler, 1976). The CRPS is
minimised when the observed value corresponds to a high
probability value in the distribution of model outputs. The
formulae and the full description of this score are available
in Jordan et al. (2019) and Laio and Tamea (2007). The calcu-
lation of the CRPS was performed using the crps_sample
function from the scoringRules package (Jordan et al.,
2019). Model global CRPS* and W50* value are calculated
as the mean of individual CRPS and W50 values, respec-
tively. In addition to the metric values, a graphical evalua-
tion of model predictions was performed through plotting ob-
served versus predicted CRPS sample values and W50 sam-
ple values for each source group.

All data analyses were performed using R (R Team, 2022,
ver. 4.2.2) within RStudio (RStudio Team, 2022). An R
package (fingR) implementing the approach followed in
this study was developed and is freely available (Chalaux-
Clergue and Bizeul, 2023).
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3 Results

According to the measurement uncertainty criterion
(Sect. 2.3), the following properties were removed from
subsequent analysis: the elemental concentrations in Co,
Cr, Cu, Ni and Rb; the visible colorimetric index A3, and
the goethite peak at 445nm (Guss), as their measurement
uncertainties were too high.

3.1 Tracer selection
3.1.1 Selection of tracers
Three-step method

The different range tests resulted in unique sets of conser-
vative properties, with only TN and Q7/4 passing all tests
(Fig. 2). Nevertheless, the majority of tests identified TOC,
Gsps, b*, Al, Ti, L* and C* (Table 3) as being conserva-
tive. The minimum—maximum =+ 10 % is the range test crite-
rion that identified the highest number of properties (n = 19),
followed by the minimum—maximum (n = 16) and whiskers
(n = 12). The minimum—maximum = 10 % range test crite-
rion was the only one that identified Fe, Pb, h, Al and GT.
As the minimum-maximum criterion, this test identified Ca,
K, Mg and Sr as conservative. The mean and median cri-
teria identified only three (TN, b*, Q7/4) and four proper-
ties (TOC, TN, Q7/4, Gsjs5), respectively. Among the prop-
erties identified as conservative, Fe, Mg, Pb and Ti were
not identified as discriminant by the Kruskal-Wallis H test
(p value =0.08) and were therefore removed from the list
of potential tracers. Although a majority of tests identified
Ti as conservative, only the minimum-maximum =+ 10 % cri-
terion identified Fe, Mg and Pb as conservative. The DFA
procedure mostly resulted in the systematic exclusion of A2
and in the frequent exclusion of TN and Gsj5, while TOC,
Al, Si, L* and Q7/4 were retained by most of the range test
criteria. Among the 16 tracers selected by the minimum-
maximum criterion, the DFA discarded seven of them (TN,
Ca, Sr, b*, C*, A2 and Gs55). In contrast, for the minimum-—
maximum =% 10 % criterion that selected 19 tracers, only five
tracers (i.e. TOC, TN, Ca, A2 and Gsjy5) were discarded by
the DFA. The outputs of the mean and median criteria were
not modified by the DFA.

Consensus method

The CI values indicate that TOC, TN, b* and C* were identi-
fied as conservative properties (CI strictly equal to 0, Fig. 3)
However, Al, Si, Ti, Q7/4 and Gs;5 obtained a CI very close
to zero (i.e. —0.1), whereas it was equal to —0.2 for Zn,
L* and A2. For these four properties, all sediment samples
(n=32) obtained a CR score above the threshold (i.e. 70)
for all sediment samples (i.e. 32 out of 32) and were there-
fore considered relevant and kept in the list of tracers for fur-
ther analysis. In addition, properties which obtained CI val-
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Table 2. Formula of model prediction accuracy metrics. With z; and Z;, respectively, the measured and predicted contributions for the sample
i; 7 and z the measured and predicted mean contribution of all samples; and n the number of samples.

Name Unit  Formula Range Ideal
value
Prediction interval width (W50) % W50 = Q(0.75) — 0(0.25) (0, 100) 0
n
Mean error (ME) % ME=1%(z;—%) (—00,+00) 0
i=1
n
Root mean square error (RMSE) % RMSE= | % 3 (zi —2)? (0, +00) 0
i=1
Z(zl D—(i—2) 2
Squared Pearson’s correlation coefficient (r2) < ) ©, 1) 1
\/Z(z, —z)z\/Z(z, —2)2
Nash—Sutcliffe modelling efficiency coefficient (NSE) NSE=1-— % (—o0, 1) 1
+00
Continuous ranked probability score (CRPS) (Fi,zi)= [ (Fiz)—H{zi <& D? (0, +00) 0
—0oQ

Three-Step Method

Properties
OoM Geochemistry Visible colourimetry
Conservative behaviour TOC TN Al Ca Fe K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt QwmGs2s
Min-Max 00 000000 V00000 0000600000V 00
Min-Max £ 10% @ @ OOOQQL 000000 0000000000
oo MiSkes OO O V00000 0000 O00®
crite?ion Hinge Q O O ‘/ ) O ) O O -~/ O O - O O
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Discriminant Power
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Figure 2. Tracer selection using the three-step method (TSM) according to different range test criteria. Green filled circles indicate a property
that passed the conservative behaviour (i.e. range test) or the discriminant power (Kruskal-Wallis H test) tests. Blue filled diamonds indicate
selected tracers (i.e. properties that passed both conservative behaviour and discriminant power tests) and blue diamonds with white points
indicate tracers retained by the discriminant function analysis (DFA) forward stepwise selection based on Wilk’s lambda criterion. Kruskal—
Wallis H test’s p-value significance: “***” p value < 0.001; “**” p value < 0.01; “*” p value < 0.05; > p value <0.1; “” p value < 1.
OM: organic matter; Min—-Max: minimum to maximum; SD: standard deviation.
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ues close to zero (i.e. Al, Si, Ti, Q7/4, Gsps, Zn, L* and A2)
also reached a high CR score (i.e. respectively 25, 22, 30, 25,
32,24, 16 and 20).

Table 3 summarises the list of tracers selected by each ap-
proach.

3.2 Prediction accuracy and tracer selection methods

The sediment source apportionment prediction accuracies
obtained when using the mean range test criterion and CM
for tracer selection were lower compared to that obtained
when using the other TSM range test criteria (Fig. 4 and Ta-
bles Al, A2, A3 and A4 in Appendix A). However, the dif-
ference in prediction accuracy was greater between sources
within each tracer selection method than between methods
(i.e. TSM and CM). The effect of the DFA stepwise se-
lection was to mainly modify the prediction accuracy of
cropland and forest. On average, W50* values (+20 %), r2
(40.01) and NSE (+0.04) increased, while ME (—37 %),
RMSE (—8 %) and CRPS (—1) decreased. In short, uncer-
tainty increased (W50*), bias decreased (ME) and perfor-
mance slightly increased (r2, NSE, CRPS*) when the DFA
was applied.

Regardless of the tracer selection method, the W50* val-
ues indicate a higher uncertainty for cropland, followed by
forest and subsoil (Fig. 4). The CM, mean and median
range test criteria showed higher W50* for each source
(21 %25 %, 13 %—18 % and 11 %—12 % for cropland, forest
and subsoil, respectively) among the tracer selection meth-
ods. The lowest W50* values were obtained by minimum-—
maximum £ 10 % and minimum-maximum with and with-
out DFA stepwise selection. Overall, minimum-maximum
and minimum—maximum =+ 10 % showed homogeneous val-
ues over the 0 %—100 % contribution range for all sources
(Fig. 5). The subsoil W50 curves showed no trend over the
contribution range for most of the range test criteria, while
there was a slight reduction in W50 values for the median
criterion and the CM. However, the W50 value for cropland
and forest tended to increase for most of the range test crite-
ria (i.e. whiskers, hinge, mean, mean &+ SD, median) and the
CM. This increase was more pronounced for the forest and
also for the CM, the mean and median criteria. In addition,
the W50 values were more scattered for these three tracer se-
lections, especially for the contributions below 60 %—70 %.
As observed for the W50* (Fig. 4), the DFA stepwise selec-
tion was associated with an increase in W50 values for all
range test criteria.

Regarding the model residuals for all tracer selections
except that obtained with the mean criteria, the error for
subsoil was low (RMSE=6% to 8 %) with a small bias
(ME =—-3% to 5 %). In contrast, forest and cropland errors
were about twice higher (RMSE = 10 % to 20 %), with a neg-
ative bias for forest (ME=—19 % to —2 %) and a positive
bias for cropland (ME=2% to 11 %). Accordingly, forest
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and cropland contributions were underestimation and over-
predicted, respectively.

In terms of model performance, the subsoil predictions
were highly linear (r>=0.97-0.99) and well predicted
(NSE = 0.92-0.95). For the TSM criteria, linearity and pre-
diction quality were slightly improved in most cases. Never-
theless, a slight decrease in precision and accuracy was ob-
served for contributions below 10 % and above 80 % (Fig. 6).
Forest predictions were highly linear for most tracer selec-
tions (r> =0.92-0.98), although their prediction quality was
lower (NSE = 0.58-0.86) due to an underestimation (i.e. ME
values, Fig. 6). This underestimation was also confirmed
by the CRPS values, which increased strongly and linearly
above 20 % of forest contribution (Fig. 6). Cropland predic-
tions were relatively linear (r>= 0.71-0.89) but not well
predicted (NSE = 0.52-0.80), representing the lowest perfor-
mance among the sources. The CRPS curves were U-shaped,
with a decrease in accuracy and precision for contributions
below 60 % and above 70 % (Fig. 7). This pattern was also
observed on the observed versus predicted plots in Fig. 6,
with a tipping point at around 40 % to 60 % of the contribu-
tion. In addition, for a contribution below 60 %, two types
of behaviour were observed regardless of the tracer selec-
tion method considered (Fig. 6). One group of virtual mix-
tures was well predicted with a small bias and low CRPS
values (< 0.05), while another group was significantly less
well predicted with a strong positive bias and higher CRPS
values (Fig. 7). These two groups correspond to virtual mix-
tures with a dominant proportion of subsoil and forest, re-
spectively. For contributions above 60 %, these two groups
converge, and no difference can be observed. This suggests
that selected tracers were able to successfully discriminate
between subsoil and forest sources, while cropland was con-
fused with one of the other two sources.

Among the selection of tracers, the mean range test crite-
rion was the one that resulted in the lowest prediction quality
(Fig. 4). Despite the fact that subsoil had a prediction quality
close to that of the other methods, cropland and forest were
poorly predicted (NSE = —0.17 and 0.00 respectively), with
modelled contributions being quite far from the theoretical
values (Figs. 6 and 7).

3.3 Source contribution predictions

The tracer selection methods resulted in three types of source
contribution trends: strong dominance of forest, strong dom-
inance of cropland, and equivalent contribution of forest and
cropland (Fig. 8).

For all approaches, subsoil contributions were low and sta-
ble, for most methods from 0+ 1% to 8 3 %. The mean
and mean = SD criteria without DFA led to higher and more
variable subsoil contributions than other methods, 12 +5 %
versus about 4 +2 %. The relationship between cropland
and forest was different depending on the tracer selection
method. For the CM, the mean and median criteria led to
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Figure 3. Tracer selection using the consensus method (CM). Green filled circles indicate properties selected by the conservativeness index
(i.e. CI=0.0). The value in the circle refers to the number of sediment samples (out of 32) that obtained a Consensus Raking score above
the threshold (i.e. CR > 70). Blue filled diamonds indicate selected tracers. OM: organic matter.

Table 3. Tracers selected by the three-step method (TSM) according to the range test criteria and the consensus method (CM). Tracers
underlined and written in bold were retained by the discriminant function analysis (DFA) forward stepwise selection based on Wilk’s lambda

criterion. Min—-Max = minimum to maximum.

Tracer selection method
Selected tracers

range test

Min-Max TOC, TN, Al Ca, K, Si, Sr, Zn, Zr, L*, a*, b*, C*, A2, Q7/4, Gs)5

Min-Max+10% TOC, TN, AL, Ca, K, Si, Sr, Zn, Zr, L*, a*, b*, C*, h, A1, A2, Gt, Q7/4, Gs»s

Whiskers TOC, TN, AL Si, Zr, L*, a*, b*, C*, A2, Q7/4, Gsps -
Three-step method  Hinge TOC, TN, Al Si, L*, b*, C*, Q7/4, Gsys

Mean TN, b*, Q7/4 o

Mean + SD TOC, TN, Al, L*, b*, C*, A2, Q7/4, Gs25

Median TOC, TN, Q7/4, G55 S

Consensus method

TOC, TN, b*, C*

model outputs showing that cropland was dominant com-
pared to forest along the sediment core. In contrast, accord-
ing to the mean & SD and hinge criteria, the contributions
of cropland and forest were modelled to be similar or with
only a slight dominance of forest. Finally, for the minimum-—
maximum, minimum—maximum =+ 10% and whiskers crite-
ria, the model calculated a strong dominance of forest over
cropland. The DFA had limited impact on the trends in the
contributions of cropland and forest for the mean 4+ SD and
hinge criteria, although it resulted in a significant smooth-
ing of the contribution values for the minimum-maximum,
minimum-maximum =+ 10 % and whiskers criteria. The con-
tribution of cropland was greatly reduced from 16 %27 % to
2 %-8 % and the dominance of forest increased from 67 %—
80 % to 89 %—97 %, resulting in an almost unique and stable
contribution from forests along the entire core. However, the
contributions of cropland and forest showed similar varia-
tions and tendencies along the sediment core for all tracer
selection methods, although their values were significantly
different. Samples taken at 9/10-10/11, 11/12—-13/14, 19/20-
20/21 and 24/25-7/28 cm depths were associated with higher
contributions from forest and lower contributions from crop-
land compared to upper/lower samples.
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The selected tracers did not provide the same information
and therefore did not provide the same ability to discrimi-
nate between the sources (Fig. 9). For most of the tracers, the
following relationship between source group signatures (i.e.
mean and SD of log-transformed values) was observed: crop-
land showed intermediate values, with either forest (TOC,
TN) or subsoil (Al, Si, L*, a*, b*, C*, A2, Q7/4, Gs25) being
the highest values. For most of these tracers, cropland had
similar values as those of forest (TOC, TN, Si, a*, b*, C*,
A2, Q7/4) or subsoil (Gsys). For a few tracers, cropland had
the higher values with either subsoil (Zn, Gt) or forest (h)
corresponding to the lower values. However, for h, the signa-
tures of cropland and subsoil were similar, and this similarity
was also observed for Zn in cropland and forest and for Gt
in forest and subsoil sources. In addition, for some selected
tracers (Ca, K, Sr, Zr, A1), all source signatures were all very
close and hardly distinguishable, making the information de-
rived from the relationships between sources less clear.

Depending on the tracer, sediment sample values did not
show the same position in relation to the source signatures
(Fig. 9). For some tracers, sample values were close to those
of cropland (i.e. Zn, b*, Al, Q7/4), forest (Al, K, Zr, L*)
or subsoil (a*, C*, h). However, for most of the tracers (i.e.
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Figure 4. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: three-step
method (TSM) range test criteria and consensus method (CM) for each individual soil source and average of all three sources for each
method. Tracers selected by each method are listed in Table 3. Model accuracy statistics were shown by darker bar plots for each selection
approach. W50*: prediction interval width; ME: mean error; RMSE: root mean square error; r2: squared Pearson’s correlation coefficient;
NSE: Nash—Sutcliffe modelling efficiency coefficient; CRPS: continuous ranked probability score. Note that symbol * indicates mean values

per source.

TOC, TN, Ca, Si, Sr, A2, Gt, Gs»5) sample values were in-
termediate between those of cropland and forest.

4 Discussion

4.1 Conservative behaviour assessment

The different tests used to assess conservative behaviour,
i.e. the TSM range test using different criteria and the
CM (I, resulted in the selection of properties with dif-
ferent restriction levels. These tests can be divided into
three groups according to the number of properties se-
lected, from the least restrictive (minimum-maximum,
minimum-maximum =+ 10 %, whiskers), via moderately re-

SOIL, 10, 109-138, 2024

strictive (hinge, mean 4= SD) to the more restrictive (CI,
mean, median). Overall, the conservative behaviour tests
tended to mainly identify the same properties as being con-
servative: TOC, TN, b*, C* and Q7/4.

In this study, all the tests identified organic matter proper-
ties as conservative (i.e. TOC and TN), except for the mean
criterion, which did not select TOC. To assess the compo-
sition of organic matter, either from terrestrial and/or fresh-
water origin, the distribution of §13C versus C/N ratio can
be compared to thresholds (Lamb et al., 2006). In a previ-
ous study conducted on a sediment core sampled from the
same site in Hayama Lake in 2014, Huon et al. (2018) con-
cluded that there was no autochthonous input of freshwater-
originating organic matter, which was confirmed in our data
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Figure 5. Relationship between theoretical virtual mixture source contributions and prediction interval width (W50) across sources (cropland,

forest and subsoil), according to each tracer selection approach: three-step method (TSM) range test criteria, which are minimum—maximum

(red circle), minimum—maximum =% 10 % (brown crossed circle), whiskers (yellow/orange diamond), hinge (green square), and mean £ SD

(blue triangle point down) — filled and empty symbols correspond to the selection before DFA (no DFA) and after DFA respectively, except

for mean (blue triangle) and median (blue crossed square) criteria for which empty symbols correspond to the same selection of tracers
before and after DFA — and consensus method (CM; purple circle plus).
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Figure 6. Relationship between theoretical and predicted virtual mixture source contributions (cropland, forest and subsoil), according
to each tracer selection approach: three-step method (TSM) range test criteria, which are minimum-maximum (red circle), minimum—
maximum =+ 10 % (brown crossed circle), whiskers (yellow/orange diamond), hinge (green square), and mean &+ SD (blue triangle point
down) — filled and empty symbols correspond to the selection before DFA (no DFA) and after DFA respectively, except for mean (blue
triangle) and median (blue crossed square) criteria for which empty symbols correspond to the same selection of tracers before and after
DFA - and consensus method (CM; purple circle plus).
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Tracer selection method
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Figure 7. Relationship between theoretical virtual mixture source contributions and continuous ranked probability score (CRPS) across
sources: three-step method (TSM) range test criteria, which are minimum-maximum (red circle), minimum-maximum 4 10 % (brown
crossed circle), whiskers (yellow/orange diamond), hinge (green square), and mean &= SD (blue triangle point down) — filled and empty
symbols correspond to the selection before DFA (no DFA) and after DFA respectively, except for mean (blue triangle) and median (blue
crossed square) criteria for which empty symbols correspond to the same selection of tracers before and after DFA — and consensus method

(CM; purple circle plus).

(see Fig. C1 in Appendix C). Organic matter and carbon
may be expected to provide a conservative property (Garcia-
Comendador et al., 2023), and this is supported by their
widespread selection.

Among the geochemical properties, Al, Ti and Si were
frequently selected by range tests. This can be explained
by their well-known low solubility (Meybeck and Helmer,
1989; Phillips and Greenway, 1998; Koiter et al., 2013) and
more specifically for Al and Si, which are constituents of clay
sheets given the granitic geological context of the study area
(see Fig. B2 in Appendix B). However, these geochemical
properties are sensitive to grain size sorting that is occur-
ring along the transport pathway as they are clay sheet con-
stituents. Other geochemical properties that were rarely se-
lected (i.e. Fe, Pb, Ca, K) or systematically rejected, such as
Mn, are associated with higher solubility or higher desorp-
tion susceptibility (Koiter et al., 2013; Garcia-Comendador
et al., 2023; Meybeck and Helmer, 1989; Phillips and Green-
way, 1998).

Among the visible colour indices, all conservative be-
haviour tests selected Q7/4, and other indices such as Gsps,
b*, C* and L* were widely selected. The colour indices L*,
b* and C* were highly correlated with organic matter prop-
erties (i.e. TOC and TN) that were also identified as con-
servative (Pearson r2 from —0.61 to —0.77; see Table A5).
This is consistent with the fact that organic matter and iron
oxides are the main soil-colouring elements. The existence
of different visible-colour spaces provides several tools for

SOIL, 10, 109-138, 2024

sediment fingerprinting studies and for selecting the most
appropriate space and indices according to the local context
(Viscarra Rossel et al., 2006). These colour spaces are inter-
connected, and the transformation of indices can be achieved
with simple mathematical formula. However, care must be
taken to avoid multi-colinearity when using multiple indices
from different colour spaces together, as redundancy of in-
formation tends to degrade modelling accuracy (Cox et al.,
2023). However, the visible-colour parameters are quite sen-
sitive to spatial and temporal variations (Garcia-Comendador
et al., 2023). The acquisition of other spectral regions such
as Vis—NIR, NIR (near-infrared) and MIR (mid-infrared) ap-
pears to be more robust (Chen et al., 2023), especially as
these regions are a powerful and reliable way to obtain the
extensive range of properties and information on the sam-
ple with the advantages of being rapid, cost-effective and
non-destructive measurements (Soriano-Disla et al., 2014).
Of note is that in order to ensure the exchange of spec-
tra within the community, the adoption of a common pro-
tocol and/or the provision of calibration spectra using inter-
calibration samples should be discussed, as spectra tend to be
instrument-dependent (Pimstein et al., 2011).

The CI was a restrictive method compared to most range
test criteria. It selected four properties, which is similar to the
number of properties selected by the mean and median range
test criteria. Nevertheless, some properties selected by other
range test criteria, which were a priori conservative proper-
ties, showed a score close to the threshold of 0.00 defined by
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Figure 8. Predicted source contributions for the sediment core samples according to each tracer selection approach. The different range test
criteria of the three-step method (TSM) are the following: minimum-maximum (red circle), minimum-maximum =+ 10 % (brown crossed
circle), whiskers (yellow/orange diamond), hinge (green square), mean (blue triangle), mean &= SD (light blue triangle point down), and
median (purple crossed square); the consensus method (CM; light purple circle plus) is also shown. Empty and filled symbols correspond to
the use of DFA or not. The error buffer ribbons around the plotted values correspond to the respective RMSE values calculated on virtual

mixtures.

Lizaga et al. (2020). Thus, Al, Si, Ti, Q7/4 and Gs;5 obtained
a Cl equal to —0.1, while it was equal to —0.2 for Zn, L* and
A2. This could indicate that properties that yielded a CI score
close to the threshold (i.e. 0.00) were not strictly conserva-
tive (e.g. size sorting for Al, Si and Ti). We suggest that either
the CI can be used to identify less conservative properties in
a selection resulting from different tests or from the modifi-
cation of the CI threshold (i.e. not strictly equal to 0.00) to
select properties currently considered not conservative.

As this study shows, a priori and field knowledge are es-
sential to assess the relevance of conservative behaviour as-
sessments (Laceby et al., 2015; Koiter et al., 2018; Batista
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et al., 2019). However, this knowledge is not sufficient and
not usable for all measured properties, especially for rel-
atively new properties as colour parameters, due to their
complex relationship with environmental processes. Other
studies developed particle size and organic matter correc-
tions, which were shown to be effective (Koiter et al., 2018).
However, they require additional measurements and are site-
specific (Koiter et al., 2018). Therefore, it is essential to de-
velop cost-effective, time-effective and generalised methods
(Koiter et al., 2018).
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Figure 9. Log-transformed values of selected tracers along the sediment core (black dot; measurement uncertainty is represented with a grey
buffer) and in the potential source signatures (vertical line represents mean value, and the buffer zone along each line represents the standard

deviation).

4.2 Tracer selection and contribution modelling

The CR index was designed to select properties based on
their relevance to prediction, as they maximise convergence.
Of the 24 properties considered in the current research, only
the TOC, TN, b*, L* and G35 reached a CR score above 70
(Fig. 3). These properties were redundant, as they showed
very similar trends along the sediment core (Fig. 9). By re-
moving tracers that prevent consensus, CR favours redundant
properties and discards dissenting properties that could nev-
ertheless be relevant, and this may lead to an information gap.
Dissenting properties can provide complementary informa-
tion, as properties do not discriminate between sources in the
same way.
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Indeed, the selection of consistent properties can result
in the prediction of a dominant source while ignoring an-
other. For example, in this study, the CR selected properties
for which sediment values were close to the cropland signa-
ture or were intermediate between cropland and forest val-
ues (Fig. 9). This selection of tracers with consistent crop-
land signature resulted in the prediction of dominant crop-
land contributions (Fig. 8).

Conversely, the DFA stepwise procedure of the TSM aims
to maximise the difference between properties by simulta-
neously minimising redundant information, which could in-
crease the prediction quality of MixSIAR (Cox et al., 2023).
In this study, the use of the DFA improved model accuracy
for all the range test criteria compared to the selection prior
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DFA (Fig. 4). However, DFA application tended to reduce
source contribution variations — especially for minimum-—
maximum, minimum-maximum *+ 10% and whiskers crite-
ria — (Fig. 8). Overall, the impact of the DFA on tracer selec-
tion modelling outputs needs more research to be clarified.

From the different tracer selections, which were all dis-
tinct, three main tendencies were observed in terms of mod-
elled contributions (Fig. 8). On the one hand, extensive
tracer selections, such as minimum-maximum, minimum-—
maximum =+ 10 % and whiskers criteria, resulted in a mod-
elled dominance of the forest contribution over cropland and
subsoil. On the other hand, restrictive selections of trac-
ers, such as the CM, mean and median criteria, resulted
in a modelled dominance of cropland contribution. Finally,
methods that selected an intermediate number of tracers, i.e.
mean =+ SD and median criteria, led to the prediction of a bal-
anced contribution between forest and cropland. This major
impact of the tracer selection methods on the source con-
tribution modelling was demonstrated by multiple studies
(Laceby et al., 2015; Palazén et al., 2015; Smith et al., 2018;
Gaspar et al., 2019).

However, in the current research, all methods agreed on
a low subsoil contribution associated with high modelling
accuracy statistics (Fig. 4). It can be assumed that since all
tracer selection methods selected TN, b* and C*, they al-
lowed us to predict the general trend of the subsoil contribu-
tion behaviour. Thus, methods that selected additional trac-
ers, such as mean & SD and median criteria, did not result
in significant modifications of the trend. However, the meth-
ods that selected a large number of tracers (i.e. minimum-—
maximum, minimum-maximum # 10 % and whiskers) re-
sulted in a strong reduction or even disappearance of the sub-
soil contribution, on average about 2 % versus 8 %. The need
for few tracers to predict subsoil with a good prediction accu-
racy can be explained by its significantly different signature
compared to forest and cropland (Fig. 9). Most of the mod-
elling limitations were related to the prediction quality for
cropland and forest, as their respective signatures were very
close to each other for many tracers (Fig. 9). However, the
same variations, i.e. higher forest and lower cropland contri-
butions, were observed for most methods. These variations
could be explained by the information provided through the
incorporation of TN and TOC contents, which were the most
frequently selected tracers. That is consistent with the results
of Huon et al. (2018), which associated a higher TOC content
with a high forest contribution. Furthermore, for the methods
that selected Al, these contribution variations were sharper
and more detailed, especially for samples collected from the
upper part of the sediment core (i.e. depth from 7 to 17 cm).

Of note, additional metrics, such as sensitivity analysis or
variable importance approach, could provide a more detailed
understanding of the role of each tracer in contribution pre-
dictions (Russi et al., 2008; Bennett et al., 2013; Wei et al.,
2015).
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4.3 Assessing modelling prediction accuracy

The generation of virtual mixtures allowed for the evalua-
tion of model prediction accuracy for a wide range of source
contributions. The use of several metrics allowed us to de-
scribe different aspects of the modelling (i.e. residuals, ac-
curacy and precision) and to better interpret the prediction
on real sediment samples (Latorre et al., 2021; Batista et al.,
2022). The graphical representation of the metrics (Figs. 5, 6,
and 7) allowed us to identify ranges of source contributions
with different prediction accuracies. This understanding of
the model supports a better appreciation and interpretation
of predictions on sediment samples.

Virtual mixtures were generated to cover the full range of
potential combinations of source contributions, varying from
0% to 100 % with 5 % increments. The range of predicted
contributions for virtual mixtures (i.e. minimum and max-
imum) defines the space of possible model predictions ob-
tained with a given set of tracers. However, for the majority
of the tracer selections investigated here, part or totality of
the sediment sample predicted contributions fell outside of
the space of the virtual mixture predicted contributions (Ta-
ble A6). This result may be explained by the fact that the as-
sumptions made when generating virtual mixtures were not
respected. For instance, tracers may not behave fully conser-
vatively during erosion processes (Koiter et al., 2013) or a
source may not have been correctly identified or classified
(Palazon et al., 2015; Smith et al., 2018; Batista et al., 2022).
Novel techniques should be developed to quantify the extent
to which a property is modified during transport (i.e. deple-
tion or enrichment) (Garcia-Comendador et al., 2023) to sup-
port the generation of virtual mixtures with tracer values that
better represent the reality. Here, virtual mixtures were gen-
erated as simple proportional mixtures of mean properties of
each source tracer, which implies that all properties are con-
sidered strictly conservative properties. This has likely not
been fully achieved with the commonly implemented tests
(i.e. range tests and CI). Indeed, the use of not fully con-
servative tracers may result in the generation of virtual mix-
ture property values that differ from those observed in actual
sediment samples. This may raise concerns regarding the va-
lidity of modelling prediction accuracy statistics calculated
with virtual mixtures and their direct transferability to actual
sediment samples. Accordingly, we may hypothesise that the
farther the sediment sample predicted contributions are from
the space of virtual mixture predicted contributions, the less
transferable the accuracy statistics of the model will be to ac-
tual sediment samples. In our opinion this comparison may
help with appreciating the level of confidence in the metrics
calculated using virtual mixtures and their direct transfer-
ability to the model predictions obtained for actual sediment
samples. This may lead to over-interpretation or misinterpre-
tation. Future research could usefully develop novel metrics
to quantify this level of confidence and better support model
evaluation.
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5 Conclusions

In this study, we compared two source sediment fingerprint-
ing tracer selection methods, the TSM and the CM, for
their selection of tracers and their resulting predictions of
source contributions for a single dataset. Conservative be-
haviour tests of both methods were compared, including a
total of seven different TSM range test criteria and the CM
CI. The different tests resulted in different selections of prop-
erties that had different sensitivity levels. On the one hand,
the minimum—-maximum, minimum-maximum =+ 10 % and
whiskers range test criteria selected a large number of prop-
erties, from 12 to 23 out of 24 potential properties, includ-
ing non-conservative properties. On the other hand, the mean
and median criteria and the CI selected a low number of
properties, from 3 to 4 tracers, which can lead to limita-
tions when modelling source contributions in target samples.
The mean & SD and hinge criteria resulted in an interme-
diate selection of tracers, selecting from 7 to 9 properties.
Although differences were observed among methods, some
tracers were selected by most of the methods (i.e. TOC, TN,
b*, C* and Q7/4), showing some consistency among them.
Although the different methods resulted in different selec-
tions of tracers, three main contribution tendencies were ob-
served in relation with the number of tracers selected. Indeed,
methods that selected a large number of tracers resulted in a
strong dominance of forest. In contrast, a limited selection
of tracers resulted in a dominant contribution of cropland.
Finally, balanced contributions of forest and cropland were
obtained for the methods selecting an intermediate number
of tracers. Based on this high variability of selected tracers
among methods, future research should develop novel met-
rics to quantify and qualify the conservative behaviour of
tracer properties during erosion and transport processes.

To assess modelling accuracy, 138 virtual mixtures were
generated as a simple proportional mixtures of sources indi-
vidual properties. Several modelling accuracy metrics were
computed for each tracer selection using virtual mixture pre-
dicted contributions. These metrics and their associated rep-
resentations provided a useful support to better evaluate the
impact of each tracer selection method on model predic-
tions. However, for most of the tracer selections, a strong
divergence in the range of predicted contributions was ob-
served for virtual mixtures and those values obtained for
actual sediment samples. These divergences highlight the
fact that evaluation metrics obtained for virtual mixtures are
likely not directly transferable to prediction obtained for ac-
tual sediment samples. Metrics should be used with caution,
to avoid over-interpretation or misinterpretation of modelling
results. These divergences may likely be attributed to the se-
lection of tracer properties with a not (fully) conservative be-
haviour during erosion, transport and deposition processes,
which could not be quantified and reproduced when gener-
ating the virtual mixtures with currently available methods.
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New methods should be designed to generate virtual mix-
tures closer to reality to better evaluate modelling accuracy.
Among the compared methods, the high variability of se-
lected tracers among the TSM and the CM, and within the
TSM according to the range test criteria, was associated with
strong divergences on modelling output results. This may
raise concerns regarding the use of quantitative outputs as
it may not meet the ultimate goal sought for by fingerprint-
ing approaches as they are currently implemented by the sci-
entific community. Consequently, to avoid a potential loss
of confidence of stakeholders regarding the validity of the
outputs of this method in the future, it is essential to take
as much care as possible to conduct an accurate and reli-
able identification of conservative behaviour, as the whole
methodology and the results rely on this initial step. This is
fundamental both for improving our understanding of ero-
sion and sedimentation processes and for guiding the imple-
mentation of effective landscape management measures. Ac-
cordingly, we encourage our colleagues from the scientific
community to share their tracing datasets obtained in con-
trasted environmental conditions around the world in order
to contribute to the further improvement, development and
evaluation of sediment source fingerprinting techniques.
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Appendix A

A1 Statistics

Table A1. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: three-step
method (TSM) range test criteria and consensus method (CM) for cropland course. W50*: prediction interval width; ME: mean error;
RMSE: root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash—Sutcliffe modelling efficiency coefficient; CRPS:
continuous ranked probability score. Note that * indicates mean values per source.

Cropland
Tracer selection method W50* ME RMSE % 2
Range test criterion DFA (%) (%) (%) CRPS r NSE
Three-step method Minimum-maximum No 10 2 15 9 0.89 0.74
Yes 13 =2 13 7 0.96 0.80
.. . No 9 5 14 9 092 0.77
Minimum-maximum = 10 % Yes 10 6 13 7095 0.80
. No 15 7 16 10 0.84 0.63
Whiskers Yes 17 5 15 9 087 071
Hinee No 12 10 18 11 0.85 0.62
ne Yes 17 7 15 9 09 073
Mean No & Yes 24 21 31 17 036 —0.17
No 15 11 19 12 0.78 0.56
Mean £ 10 % Yes 16 10 18 11077 059
Median No & Yes 25 2 17 10 0.77 0.63
Consensus method 21 11 20 11 0.71 0.52

Table A2. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: three-step
method (TSM) range test criteria and consensus method (CM) for forest course. W50*: prediction interval width; ME: mean error; RMSE:
root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash—Sutcliffe modelling efficiency coefficient; CRPS: continu-
ous ranked probability score. Note that * indicates mean values per source.

Forest
Tracer selection method W50* ME RMSE % 2
Range test criterion DFA (%) (%) (%) CRPS r NSE
Three-step method Minimum-maximum No 7 —7 14 8 096 0.75
fmumEmaxmu Yes 0 -2 10 6 096 0.86
.. . No 6 -8 14 9 098 0.74
Minimum-maximum = 10 % Yes 3 _6 13 6 098 079
. No 10 -8 15 9 096 0.73
Whiskers Yes 12 -6 14 8 095 0.77
Hi No 8 —10 16 10 0.97 0.67
1nge Yes 1 -7 14 8 097 0.77
Mean No & Yes 18 —-19 28 15 0.79  0.00
No 10 —11 17 10 0.96 0.65
Mean £10% Yes 10 -10 17 10 096 0.65
Median No & Yes 14 —6 14 8 092 0.75
Consensus method 13 —12 18 10 093 0.58
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Table A3. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: three-step
method (TSM) range test criteria and consensus method (CM) for subsoil course. W50*: prediction interval width; ME: mean error; RMSE:
root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash—Sutcliffe modelling efficiency coefficient; CRPS: continu-
ous ranked probability score. Note that * indicates mean values per source.

Subsoil
Tracer selection method W50* ME RMSE * )
Range test criterion DFA (%) (%) (%) CRPS r NSE
Three-step method Minimum-maximum No 8 5 8 5 099 092
Yes 8 3 7 4 099 093
.. . No 5 3 7 4 1.00 093
Minimum-maximum =+ 10 % Yes 6 0 7 4 100 093
. No 8 1 6 4 098 0095
Whiskers Yes 8 1 6 4 098 095
Hinee No 6 -1 7 4 099 095
£ Yes 9 0 7 4 099 094
Mean No & Yes 11 -3 8 5 097 092
No 8 0 7 4 098 0095
Mean =10 % Yes 8 1 7 4 097 0095
Median No & Yes 12 4 9 5 095 0.90
Consensus method 11 1 7 4 097 094

Table A4. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: three-step
method (TSM) range test criteria and consensus method (CM) averaged on the three sources (i.e. cropland, forest and subsoil). W50*:
prediction interval width; ME: mean error; RMSE: root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash—Sutcliffe
modelling efficiency coefficient; CRPS: continuous ranked probability score. Note that * indicates mean values per source.

Averaged
Tracer selection method W50* ME RMSE % 2
Range test criterion DFA (%) (%) (%) CRPS r NSE
Three-step method Minimum—maximum No 8 0 12 7 0.95 0.80
fmumEmazimu Yes 10 0 10 6 097 0.86
.. . No 7 0 12 7 097 0.81
Minimum—maximum % 10 % Yes 3 0 1 6 098 0.84
. No 11 0 12 8 0.93 0.77
Whiskers Yes 12 0 12 7 093 0.81
Hinee No 9 0 14 8 0.94 0.75
1ne Yes 12 0 12 7 095 0.81
Mean No & Yes 18 0 22 12 0.71 025
No 11 0 14 9 091 0.72
Mean 10 % Yes 11 0 14 8 090 0.73
Median No & Yes 17 0 13 8 0.88 0.76
Consensus method 15 0 15 8 0.87 0.68
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Table A5. Selected tracer Pearson correlation coefficients. The symbol - represents correlation with significance test p value lower than 0.05.

TOC N Al Ca K Si Sr Zn Zr L* a* b* c* h Al A2 Gt Q7/4
TN 0.97
Al —-0.76 —0.83
Ca 0.13 021 -0.52
K —-033 —-0.37 0.56 —0.50
Si —-047 053 051 —0.41 0.47
Sr 0.05 0.12  —-0.49 0.87 -0.53 -0.37
Zn 0.06 020 —0.28 047 -039 —0.53 0.23
Zr - =027 047 —0.43 0.71 024 -048 —0.19
L* -0.71  —=0.77 083 —0.56 0.65 053 —-0.50 —0.37 0.53
a* —-0.29 —-043 0.66 —0.63 0.29 039 —-0.53 —0.43 0.37 0.61
b* —-0.63 —0.72 0.75 —0.49 0.20 045 -038 —0.32 . 0.68 0.79
c* —-0.61 —0.71 0.75 —-0.52 0.21 045 —0.40 —0.34 0.17 0.69 0.83 1.00
h . . . . . 0.30 - =035 . . .
Al . . . - —0.56 . 0.36 - —0.55 . . - 055
A2 -0.27 —-0.27 . . . . . . . 0.41 0.58 0.58 - 077
Gt . —0.32 055 -023 -0.21 0.52 033 -037 -030 -0.68 —0.28 —0.33 0.64 . .
Q7/4 049 —0.54 0.47 . 0.17 . . 0.35 0.52 0.83 0.81 - 076 082
Gsps  —0.59 —0.68 0.80 —0.57 0.44 053 —-0.50 —0.42 0.33 0.83 0.78 0.89 0.89 . - 044 -035 0.64

Table A6. Number of sediment samples that fell inside of the space of the virtual mixture predicted contributions for each tracer selection
method out of 32.

Tracer selection method Source group
Range test criterion DFA Cropland  Forest  Subsoil
Three-step method Minimum—maximum No 33 2 0
inimu Ximu Yes 0 0 0
- . No 31 1 0
Minimum-maximum % 10 % Yes 0 0 0
. No 36 15 9
Whiskers Yes 13 0 0
Hinee No 37 34 6
& Yes 37 31 16
Mean No and Yes 37 37 30
No 37 31 30
Mean £ 5D Yes 37 33 10
Median No and Yes 6 37 13
Consensus method 10 37 7
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Figure B1. Map of the main land uses in the study area over the 2014-2016 period with location of the source samples and the sediment
core (cartographic data: GSI and JAXA). FDNPP: Fukushima Daiichi Nuclear Power Plant.
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Figure B2. Map of the main geology types in the study area with location of the source samples and the sediment core (cartographic data:
GSI). FDNPP: Fukushima Daiichi Nuclear Power Plant.
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Figure B3. Map of the main soil types in the study area with location of the source samples and the sediment core (cartographic data: GSI

and NARO). FDNPP: Fukushima Daiichi Nuclear Power Plant.

Appendix C: Laboratory analysis

C1 Organic matter

In the Hayama Lake catchment, sediment and soils were
found to not contain carbonate minerals, and all the carbon
associated with particulate matter is organic in nature (Huon
et al., 2018). Total organic carbon (TOC) and total nitrogen
(TN) elemental concentrations and isotopes (813C and °N)
were determined by combustion using a continuous-flow el-
ementary analyser (Elementar Vario PYRO cube) coupled
with an isotope ratio mass spectrometer (EA-IRMS) (Micro-
mass Isoprime) at the Institute of Ecology and Environmental
Sciences (iEES, Paris) in France. A first analysis was con-
ducted to measure TOC concentrations together with a set of
tyrosine standards (Coplen et al., 1983). The second analy-
sis was dedicated to measure TN concentrations after sam-
ple weight optimisation from TOC results. For combustion,
oxygen was injected during 70s (30 mL min~') at 850°C
for reduction, and the combustion furnace was at 1120°C
(Agnihotri et al., 2014). The analytical precision was as-
sessed with repeated analyses of a tyrosine internal standard
(n =151), calibrated against international reference standards
(Girardin and Mariotti, 1991). The analysis of these prop-
erties in source material is described in detail in the study
by Laceby et al. (2016b). To evaluate whether the samples
are composed of terrestrial or freshwater-originating mate-
rial, the distribution of sample values was plotted in a §'3C
versus TOC/TN diagram and compared to the thresholds re-
ported in Lamb et al. (2006) (Fig. C1).

https://doi.org/10.5194/s0il-10-109-2024

C2 Geochemistry

Elemental geochemistry was determined using X-ray fluores-
cence (XRF) (Malvern Panalytical, ED-XRF Epsilon 4). A
total of 17 elemental concentrations were measured (Al, Ca,
Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Si, Sr, Ti, Zn, and Zr).
Measurements were conducted in containers covered with a
3.6 um thin Mylar film (Chemplex, Mylar thin-film cat. no.
157) with a 10 mm exposure surface. A minimum of 0.1 g of
material was analysed. To consider the potential heterogene-
ity within a sample, three replicate measurements were made,
and the mean value of these replicates was calculated. To as-
sess the accuracy of the measurements, a standard (JMS-1,
sediment from the Tokyo Bay, Terashima et al., 2002) was
measured every seven samples (n = 38), and the accuracy of
the measured batch was determined based on the calculation
of the root mean square errors (RMSE).

C3 Visible colorimetry

Visible colorimetry was measured using a portable diffuse re-
flectance spectrophotometer, Konica Minolta CM-700d, set
on a 3 mm target radius. Samples were measured in a plas-
tic zip bag. In order to account for potential heterogeneities
within a sample, three measurements were made at different
locations on the bag. The spectrophotometer was calibrated
at the start of each set of measurements with a zero (black)
and white standards. Measurements were conducted accord-
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Figure C1. Sediment core and source samples §13C and TOC/N

and typical ranges for organic inputs to lacustrine environments
(thresholds from Lamb et al., 2006).

ing to the D65 illuminance standard, 10° angle observer and
excluding the specular component. The spectral reflectance
(in %) was measured from 360 to 740 nm with a 10 nm reso-
lution (30 wavelength classes). Raw data were processed us-
ing the colour data software CM-S100w SpectraMagic NX
(Konica Minolta, 2022). Colour parameters within the Carte-
sian coordinate systems CIE Lab (1976) (i.e. L*, a* and b*)
(CIE, 2008) and CIE LCh (i.e. C* and h) were exported. The
CIE LCh is a vector representation of the CIE Lab (1976). C
and h are derived from a* and b* parameters. Within the CIE
Lab system, L* is the lightness of the colour, from black (0)
to white (100); a* is the position between green to red (nega-
tive values are associated with green and positives with red);
and b* is the position between blue and yellow (negative val-
ues are associated with blue and positive values with yellow).
Within the CIE LCh system, C* is the chroma (positive val-
ues are associated to brighter colours and negative values to
duller colours), and h is the hue angle (in °) in the CIE Lab
colour wheel.

The Q7/4 ratio as defined by Debret et al. (2011) was cal-
culated as the ratio between 700 and 400 nm reflectance val-
ues. This ratio provides a numerical description of the re-
flectance spectrum general slope.

The oxy-hydroxide geothite («-FeOOH) soil richness can
be determined using visible diffuse reflectance spectra (Kos-
mas et al., 1984; Balsam et al., 2004; Hao et al., 2009; Tor-
rent et al., 2007), and its peak values at 445 and 525 nm
were calculated from the first derivative reflectance spec-
trum (Debret et al., 2011). In our case, the geothite con-
centration was not aimed for, only the relative abundance
among our samples in order to differentiate between them.
For each replicate of the measurements and for each sam-
ple, the first derivative reflectance spectrum was calcu-
lated and smoothed with a Savitzky—Golay filter using the
savitzkyGolay function (differentiation order = 1, poly-
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nomial order =3, window size=35 (equivalent to 50 nm))
from R package prospectr (Stevens and Ramirez-Lopez,
2022) (Wadoux et al., 2021). Then the mean per sample and
the standard deviation were calculated. From the first deriva-
tive of reflectance, two geothite peaks were calculated: first,
the 445 nm peak value was calculated as the mean of values
at 440 and 450 nm, and second, the 525 nm peak was calcu-
lated as the mean of those at 520 and 530 nm (Debret et al.,
2011).

The remission function was calculated from the re-
flectance spectrum: f(R)=(1— R)? according to the
Kubelka—Munk relationship (Scheinost et al., 1998). Then,
the second derivative was calculated and the spectrum
was smoothed with a Savitzky—Golay filter using the
savitzkyGolay function (differentiation order =2, poly-
nomial order = 3, window size = 5). From the second deriva-
tive of the remission function spectrum, the iron oxide-
associated parameters (Al, A2, A3) and the goethite propor-
tion within iron oxides (Gt) were obtained (Tiecher et al.,
2015). The A1l and A2 peaks are associated with goethite,
and the A3 peak is associated with hematite; all peaks were
calculated as the amplitude between each maximum and min-
imum band. Thus, Al is the difference between 450 and
420 nm, A2 is the difference between 510 and 480 nm, A3 is
the difference between 575 (as the mean of 570 and 580 nm)
and 535 nm (as the mean of 530 and 540 nm), and Gt is cal-
culated as the ratio of A1/(Al + A3).

Code and data availability. The dataset is available online at
https://doi.org/10.5281/zenodo.7081094 (Chalaux-Clergue et al.,
2022). The code to run models, summarise results and plot re-
sults is available in the Supplement (Rmd file). In order to fa-
cilitate the implementation of the presented framework, an R
package, fingR (https://doi.org/10.5281/zenodo.8293596, Chalaux-
Clergue and Bizeul, 2023, ver. 1.1.0), with all the functions used in
the current study has been developed and is freely accessible.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/s0il-10-109-2024-supplement.
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