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Online Resource 3: Data processing, data sources, sensitivity, and agreement with 1 

observed SOC stocks. 2 

Data processing and sources 3 
Processing of spatially explicit data — Raster maps were obtained from various sources using an 4 
equally spaced longitude-latitude raster but differing in resolution. Quantitative data (e.g., 5 
temperature) was resampled to a halfdegree grid using averages. Qualitative data (e.g., land use) was 6 
resampled using the modal value. We used GRASS 6.4 (http://grass.osgeo.org) to process 7 
geographical data and R (R Development Core Team, 2011) for mapping and post-processing. 8 

Climate — We used WorldClim 1.4 at 5 arc minutes resolution to obtain mean monthly temperatures 9 
and precipitation and to calculate annual degree days and the aridity index. WorldClim represents the 10 
climate for the period 1950–2000 (Hijmans et al., 2005 , http://www.worldclim.org). WorldClim was 11 
generated through interpolation from average monthly climate data from weather stations on a 30 arc 12 
second grid. Ensemble predictions for mean monthly temperature and precipitation anomalies as the 13 
medians of the output of 16 GCM for the A1B emission scenario 2070-2099 were obtained at 30 arc 14 
minutes (“50 km”) resolution from ClimateWizard (http://www.climatewizard.org, accessed 2010-08-15 
17, Adam and Lettenmaier, 2003; Meehl et al., 2007; Wood et al., 2004). We applied anomalies to 16 
climate data at 5 arc minutes resolution and then averaged to 30 arc minutes resolution. Regions of 17 
strong changes are shown in Figs. 1–2. 18 

 19 

Fig. S3.1. Mean absolute changes in temperature (K) of each month of the year (∑(|∆TM|)/12). 20 
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 1 

Fig. S3.2. Mean absolute changes in monthly precipitation (mm) of each month of the year 2 
(∑(|∆PM/PM|)/12). 3 

 4 

Soil — C content, bulk density, soil depth, CEC, and pH(H2O) were extracted from the Harmonized 5 
World Soil Database (HWSD) 1.1 (FAO et al., 2009) at 30 arc seconds resolution. Bulk density of 6 
organic soils and SOC were corrected as described in Köchy  (Köchy et al., 2014). SOC stocks were 7 
calculated separately for 0-30 cm and 30-100 cm soil depth and summed to 1 m or a smaller depth 8 
indicated in the HWSD. C stocks for primary and secondary soil types within each soil mapping unit 9 
were weighted by their relative area. Similarly, we calculated a weighted CEC across soil layers and 10 
soil types for each soil mapping unit (Fig. S3.3). We averaged pH across soil types only for the top 11 
soil layer because most of the decomposition processes occur there. Presence of permafrost and 12 
constraints of oxygen availability were obtained from HWSD supplementary soil quality data ‘SQ4’ at 13 
5 arc minutes resolution (Fischer et al., 2008). Oxygen constraints take into account soil type, soil 14 
texture, soil phases, and terrain slope. 15 

 16 

Fig. S3.3. Global stock (a) and mass (b, per 5° latitude) of organic carbon in the top 100 cm of the 17 
terrestrial soil calculated from HWSD v.1.1-modified  (from Köchy et al., 2014). 18 

 19 
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Vegetation cover — Zonal (potential natural) vegetation (Fig. S3.4) and land use is based on 1 
corresponding products at 5 arc minutes resolution (Sterling and Ducharne, 2008). These were 2 
ultimately synthesized from output of the BIOME3 vegetation model (Haxeltime and Prentice, 1996), 3 
the IGBP DISCover land cover map referring to 1992 (Ramankutty and Foley, 1999), and additional 4 
sources. We reclassified the zonal vegetation types of Sterling & Ducharne to match the classes for 5 
biome transition of Gonzalez et al. (2010) (Online Resource 4, Table S4.1). The azonal vegetation 6 
classes of Sterling & Ducharne were aggregated to built-up, annual crops, and pasture. We set the 7 
azonal vegetation class to ‘plantation’ when the forestry map of Erb et al. (2007) indicated >50% land 8 
use by forestry or when the Global Land Cover Characterization map (version 2.0, resampled to 5 arc 9 
minutes, http://edcdaac.usgs.gov/glcc/glcc.html, representing conditions in 1992/1993) indicated tree 10 
crops (classes 95 and 96 of the Global Ecosystems legend). We set the azonal vegetation class to 11 
‘wetland’ when the Global Lakes and Wetlands Database (level 3, resampled to 5 arc minutes, Lehner 12 
and Döll, 2004) indicated the dominance of swamp forest/flooded forest, coastal wetland, 13 
bog/fen/mire, or 50-100% wetland. 14 

 15 
Fig. S3.4. Global distribution of vegetation zones used in this study. TE: tropical evergreen forest, TD: 16 
tropical deciduous forest, TW: tropical woodland, TG: tropical grassland, HD: hot deserts, SL: 17 
shrubland, ME: temperate evergreen forest, MD: temperate deciduous forest, MM: temperate mixed 18 
forest, MG: temperate grassland, BF: boreal forest, TU: tundra, XX: bare, ice, rocks. 19 

 20 

Net primary productivity of the zonal and azonal vegetation for contemporary conditions is based on 21 
maps NPP0, and NPPt of Haberl et al. (2007). NPP0 represents the productivity of the zonal vegetation 22 
simulated by the dynamic global vegetation model LPJ for the climate of 1902–2002 on a 0.5° raster. 23 
NPPt represents NPP remaining in ecosystems after harvest calculated from average LPJ results for 24 
1998–2002, resampled to 5 arcminutes, and modified according to harvest and resource use statistics 25 
from FAOStat (Haberl et al., 2007). When the azonal vegetation of a grid cell was ‘built-up’ (not 26 
included in Haberl et al., 2007), we set NPPt to zero. 27 

For environmental conditions under the A1B emission scenario, we used simulations of NPP0 and 28 
multiplied it with the harvest factor NPPt/NPP0. For the enhanced-NPP target scenario we used the 29 
NPP0 simulated by the process-based LPJ dynamic global vegetation model (Sitch et al., 2003; Gerten 30 
et al., 2004) with the CCSM3 global climate model as a driver averaged across years 2075–2099 (Fig. 31 
S3.2a). We used LPJ because it was used by Haberl et al. (2007) for calculating NPP0. We used 32 
CCSM3 because it was similar (by visual inspection of range and pattern) to the ensemble mean 33 
climate change predictions. For the limited-NPP target scenario we used the NCEAS model (Del 34 
Grosso et al., 2008) to calculate NPP0 (Fig. S3.2b). The NCEAS model uses mean annual precipitation 35 
(MAP), mean annual mean temperature (MAT), and tree dominance of the vegetation as predictors of 36 
NPP0 as follows: 37 
 38 

39 
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NPP0 = 6116 × [1 – exp(–6.05 10-5 × MAP)] for non-tree dominated systems and 1 
min[ƒ(MAP), ƒ(MAT)] for tree-dominated systems with 2 
ƒ(MAP = 0.551 × MAP1.055/exp(0.000306 × MAP) and  3 
ƒ(MAT) = 2540/[1 + exp(–4.77 × 10-5 × MAT)].  4 
We capped MAP at 6000 mm to prevent the prediction of unrealistically low NPP0 in perhumid 5 
regions and restricted the range of NPP0 to 1.5 kg/m², the highest value on the scale of Haberl et al. 6 
(2007) for NPP0. 7 

 8 
Fig. S3.5. Distribution of NPP after harvest (NPPt, kg C/m2) in a) the limited NPP and b) the enhanced 9 
NPP scenario.  10 
 11 

12 
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Soil model, summary equation 1 
The total amount of C in the fast and slow pool after one year are  2 
Cfast,t+1 = (Cfast,t+ NPPt)·(1–fmf·Ff)·(1–toslow) and  3 
Cslow,t+1 = Cslow,t·(1–fmf·Fs) + Cfast,t+1·(1–fmf·Fs).  4 
The initial value of Cfast is 0 and the initial value of Cslow is the accessible fraction (af) of the initial 5 
total C stock (C0) or C0· af.  6 
 7 
For n years, the equations can be expressed as 8 

Cn = NPP · ⎝
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 + C0 · af · (1–fmf·Fs)n. 11 

Calibration, further details 12 
HWSD-SOC stocks > 10 kg/m² tended to be slightly underestimated by one class level (Fig. S3.3), 13 
whereas stocks < 2 kg/m2 tended to be overestimated. 93% of all observed values were within 1 and 14 
99% were within 2 standard deviations of the predicted value. We checked randomly selected points 15 
where the prediction was off by > 10 kg/m2. The model overestimated HWSD-C stocks where HWSD 16 
indicated severe O2-constraints but the pixels were not classified as wetlands. The model 17 
underestimated HWSD-SOC stocks in continental-climate crop regions due to a low harvest fraction 18 
and in dry shrublands. We note that our calibration procedure implicitly assumes that the SOC stock as 19 
calculated from HWSD is in equilibrium with NPPt and contingent on the land use derived from other 20 
maps. This assumption is not likely to be true for each grid cell.  21 

 22 

 23 

Fig. S3.6. Relative proportion (circle diameter) of the most probable predicted C stock classes with 24 
number of cases in each class of observed (HWSD) C stock in the validation set (50% of all points). 25 

Sensitivity 26 
We express the sensitivity of the reference SOC stock as the percent reduction of its variance due to 27 
setting a class of each of the other variables to certain (100% certainty) (Pearl, 1991). We use the LPJ 28 
network variant for assessing sensitivity because of its greater climatic detail. The greatest sensitivity 29 
of the total reference SOC stock was to NPPt (36%) and NPP0 (30%), followed by vegetation zone 30 
(20%) and HWSD-SOC (16%) and fmf (15%). Sensitivity to vegetation zone was high because it was 31 
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linked to many variables in the network to express regional subsets, which reduced the overall number 1 
of class combinations. Plant types (12%), land use (8%), pH (7%), and remaining NPP fraction (6%) 2 
had smaller effects on variance reduction. Sensitivity of the remaining variables, including degree 3 
days and fmfclimate were <5%.  4 
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