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Abstract. The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consider-

ation of its role in regional and global issues demands the mapping of large extents. There are many different

strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly

or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to

mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial

association. The final products for both strategies are high-resolution maps of SOC stocks (kg m−2), covering an

area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated

error map was based on the internal error estimations from the model rules. For the indirect approach, the es-

timated error map was produced by spatially combining the error estimates of component models via standard

error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qual-

ities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach

produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial

variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although

the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the

total SOC stock (topsoil+ subsoil) was lower for the direct approach. For these reasons, we recommend the

direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks’ spatial

distribution.

1 Introduction

The storage of carbon in soil is a critical point of informa-

tion for several environmental issues. Globally, soil carbon,

which is about 60 % organic carbon, accounts for 3.3 times

more carbon than that found in the atmosphere (Lal, 2004).

The high amount of carbon stored in the soil makes soil

carbon an important factor for understanding the carbon cy-

cle and dynamics influencing global climate change (Grace,

2004; Johnston et al., 2004; Powlson et al., 2011). In ad-

dition, higher concentrations of soil organic carbon (SOC)

are associated with better water storage capacity, regulation

of nutrients, and stabilization of soil aggregates, resulting in

improved soil structure and resistance to erosion (Neemann,

1991; Angers and Carter, 1996; Rawls et al., 2003; Snyder

and Vazquez, 2005; Johnston et al., 2009; Kay, 1998; Wil-

helm et al., 2004). Each of these factors has important roles

in issues of water management and crop productivity.

Although SOC management has far-reaching implications,

the distribution of SOC is highly variable and dynamic at the

field scale (Cambardella et al., 1994; McBratney and Pringle,

1999; Walter et al., 2003; Kravchenko et al., 2006b; Sim-

bahan et al., 2006). Differing conditions, such as hydrology

or management practices, greatly impact the SOC content

(Kravchenko et al., 2006a). The combination of global im-

plications and high spatial variability make high-resolution

maps of SOC for large extents desirable for both policy de-

cisions and land-owner response. This situation creates the

need to accurately and efficiently assess the spatial distri-

bution of SOC stocks at a high resolution. High-resolution
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mapping captures information essential for assessing field-

specific conditions, which can later be aggregated as needed

to provide summary information.

Many studies have tested a variety of strategies for pre-

dicting the spatial distribution of SOC (Minasny et al., 2013,

and references therein). The various studies on SOC map-

ping have analysed different soil depths, which has large im-

plications for the consideration of the complete SOC stock

(Richter and Markewitz, 1995; Batjes, 1996; Jobbágy and

Jackson, 2000; Sombroek et al., 2000; Schwartz and Namri,

2002; Meersmans et al., 2009). For example, some have fo-

cused on spatially modelling the topsoil to depths of 20–

30 cm (e.g. Ungaro et al., 2010; Zhang et al., 2010; Martin

et al., 2011). Other variations in strategies for digital SOC

mapping differ in which variables are modelled in order to

predict SOC. For instance, some studies have modelled the

SOC stock (e.g. kg m−2, T ha−1, kg m−3) directly (Simbahan

et al., 2006; Lufafa et al., 2008; Nyssen et al., 2008; Mishra

et al., 2010; Phachomphon et al., 2010; Kempen et al., 2011),

while others have separately modelled the variables needed

to calculate the SOC stock and then combined them (Grimm

et al., 2008; Khalil et al., 2013; Lacoste et al., 2014). The

usual component variables are total bulk density (BD), par-

ticles> 2 mm (SK), SOC concentration (SOC%), and stock

thickness (H ), which are then combined by

SOCstock =

(
SOC%

100

)
· (BD · 1000) ·

(
100−SK

100

)
·H, (1)

where SOCstock is in kg m−2, SOC% is in percent, BD in

g cm−3, SK in percent, and H in m.

Irrespective of the approach used, an important output

of digital soil mapping is a measure of uncertainty. Or-

ton et al. (2014) compared uncertainties resulting from di-

rectly modelling the SOC stock (direct: calculate then model)

with modelling component variables for calculating the SOC

stock (indirect: model then calculate), based on geostatistical

approaches that rely on spatial autocorrelation. In the present

study, we made a similar assessment for rule-based, multiple

linear regression (MLR) models, which rely on spatial asso-

ciation.

With the spatial association (i.e. spatial regression) ap-

proach to soil mapping, the empirical model error can be

transferred along with the model itself (Lemercier et al.,

2012). For digital soil mapping, Malone et al. (2011) adapted

the Shrestha and Solomatine (2006) approach for empirically

summarizing model error and extending that information to

prediction areas. In those previous studies, areas expected to

have similar errors were grouped by cluster analysis. Because

similar sites are already grouped together in rule-based, MLR

models, the estimated errors can be applied to the areas meet-

ing the same rule conditions and thus mapped. The ability to

map predictions of soil properties and the confidence in those

predictions via spatial association is important for landscape

to national extents because of the common limitation of sam-

pling density (Martin et al., 2014).

The purpose of this study was to compare the maps of

SOC stocks produced from direct and indirect modelling ap-

proaches, using rule-based MLR. The resulting maps were

compared in terms of their predicted spatial patterns, coef-

ficient of determination (R2), and the magnitude and spatial

distribution of the estimated errors. The predictors selected

for the models via the data mining procedure were evaluated

in the context of known landscape processes. In addition, the

separate assessment of topsoil and subsoil stocks tested the

models’ ability to predict SOC storage at depths to 2 m.

2 Methods

2.1 Study area and sampling

A dominantly agricultural area located near Wulfen, Saxony-

Anhalt, Germany, which has been examined by several previ-

ous studies (Selige et al., 2006; Brenning et al., 2008; Kühn

et al., 2009; Migdall et al., 2009), was selected for this re-

search. The mapping area extends from 11.86◦ E, 51.74◦ N to

11.96◦ E, 51.90◦ N (Fig. 1), covering a total area of 122 km2.

The landscape includes hummocky till plain, outwash plain,

loess, and a broad floodplain (Königlich Preußische Geol-

ogische Landesanstalt, 1913a, b). The study area is domi-

nated by Calcaric Cambisols and Luvic Phaeozems, while

the depressional area in the floodplain is primarily Dystric

Gleysols (European Commission, 2014). Between 2005 and

2006, 117 locations were sampled from a variety of land-

scape positions in 12 different agricultural fields, covering

the known feature space for agricultural land in this area.

Because all models were calibrated and validated on these

samples, evaluation of the resulting maps focused on areas

with similar land use (i.e. water bodies and urban areas ex-

cluded). Ten of the sample points, also spread across the fea-

ture space, were of repeated locations (within 2 m of origi-

nal), which helped to insure that random error was reflected

in the assessment of estimated error.

Soil horizons identified in the field were sampled at each

sampling location. To avoid biases from horizon classifica-

tions and to focus on the two major process zones for SOC,

the soil profile of 2 m was divided into topsoil and subsoil

stocks. The division was defined by the largest decrease in

SOC%, as determined by lab analysis, between field identi-

fied horizons. Not all profiles were able to be sampled to the

full depth of 2 m. In those cases, the properties of the sampled

subsoil were assumed to be representative of the remaining

depth. Data for the horizons within each stock were com-

bined using a thickness-weighted mean, as appropriate. De-

scriptive statistics for these observation points are provided

in Table 1.

2.2 Modelling

Models for each of the target variables were generated us-

ing Cubist 2.08 software (Quinlan, 1992, 1993, 1994). Pre-
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Figure 1. Locations of sample points and study area within Ger-

many.

vious studies have demonstrated the utility of this tool for

digital soil mapping (Bui et al., 2006; Minasny and McBrat-

ney, 2008; Adhikari et al., 2013; Lacoste et al., 2014). Cu-

bist uses a data mining algorithm to build two-tiered models.

The top level consists of a series of conditional rules that can

utilize both continuous and categorical predictors. For each

rule, a MLR equation is produced for predicting the target

variable. Cubist’s process for selecting predictors and build-

ing the models is described in Quinlan (1993) and Holmes

et al. (1999) and will not be repeated here. One advantage of

this approach is the interpretability of the produced model,

which allows the modeller to assess relationships between

the model and physical processes (Bui et al., 2006).

The results of the data mining process are dependent upon

the predictors made available to the data mining software.

For this reason, we used the large predictor pool method de-

scribed by Miller et al. (2015) to identify the optimal mod-

els for each of the respective target variables. That method

includes a multiple pass test, which reapplies the Cubist al-

gorithms to the limited pool selected by the previous run.

This helps to insure that the selected predictors have been

optimally reduced by the Cubist software, decreasing the

Table 1. Descriptive statistics for the observed target variables.

BD: total bulk density (g cm−3); SK: particles> 2 mm (%); SOC%:

SOC concentration (%); H : stock thickness (cm); and SOCstock:

mass of organic carbon per unit area of soil (kg m−2).

Topsoil BD SK H SOC% SOCstock

Min. 1.18 0.00 10 0.75 1.80

Median 1.50 1.30 40 1.46 9.27

Mean 1.51 3.15 43.61 1.56 9.82

Max. 1.85 44.70 105 4.03 28.03

SD 0.11 5.50 15.35 0.53 4.49

Subsoil

Min. 1.33 0.00 18 0.02 0.07

Median 1.63 4.07 86 0.23 3.10

Mean 1.63 8.99 86.66 0.26 3.37

Max. 1.96 63.36 155 0.71 9.86

SD 0.13 12.28 32.60 0.13 2.04

concern of overfitting. The predictor pool for this study in-

cluded 410 base maps covering the full extent of the study

area (Table 2). These base maps consisted of a legacy ge-

ologic map, a variety of remote sensing/spectral products,

and digital terrain analysis (DTA). The spectral products

ranged from four bands of Ikonos data to a variety of Land-

sat data collected at different times in 2006. DTA was con-

ducted on a 2 m resolution digital elevation model (DEM),

created from lidar data that were also collected in 2006.

The DTA base maps included land-surface derivatives based

on a wide range of analysis scales (a-scales) and a suite

of hydrologic indicators. Land-surface derivatives were cal-

culated in GRASS 6.4.3 (Geographic Resources Analysis

Support System, http://grass.osgeo.org) and ArcGIS 10.1

(www.esri.com/software/arcgis). Hydrologic indicators were

calculated using SAGA 2.1.0 (System for Automated Geo-

scientific Analysis, http://www.saga-gis.org/en/index.html).

The predictors selected by the Cubist software were then

used as base maps to generate maps of SOCstock. Using the

raster calculator in ArcGIS 10.1, the base maps were com-

bined according to the MLR equations produced by Cubist.

When base maps of different resolutions were combined, the

finest resolution was maintained. The respective MLR equa-

tions were only applied in the areas that met the conditions of

the Cubist model’s first tier. The first experimental approach

used this method to directly map SOCstock from the SOCstock

calculated at each sample point. The second experimental

approach used this method to map each of the component

variables. These modelled variables were then used as base

maps to create a SOCstock map. The raster calculator was then

again used to combine the component variables, but this time

according to Eq. (1). For both experimental approaches, the

topsoil and subsoil were mapped separately. After the respec-

tive SOCstock maps were produced, they were added together

to create total SOCstock maps.

www.soil-journal.net/1/217/2015/ SOIL, 1, 217–233, 2015
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Table 2. Predictor variables considered in this study.

Predictor Software Analysis scale

Elevation (lidar, bare earth) n/a 2 m

Slope gradient GRASS 6–195 m

Profile curvature GRASS 6–195 m

Plan curvature GRASS 6–195 m

Aspect – west {rotated for N, E, and S} GRASS 6–345 m

Aspect (8 classes) ArcGIS (raster calculator) 6–345 m

Northness transformed from aspect 6 –345 m

Eastness transformed from aspect 6–345 m

Longitudinal curvature SAGA 10 m

Cross-section curvature SAGA 10 m

Convexity SAGA 10 m

Relative elevation – rect. neighbourhood ArcGIS toolbox 6–4000 m

Relative elevation – circ. neighbourhood ArcGIS toolbox 6–4000 m

Topographic position index (TPI) ArcGIS toolbox 6–4000 m

TPI – slope position ArcGIS toolbox multiple

TPI – landform classification ArcGIS toolbox multiple

Hillslope position ArcGIS toolbox multiple

Catchment area SAGA n/a

Catchment slope SAGA n/a

Channel network base level SAGA n/a

Convergence index SAGA n/a

Flow accumulation SAGA n/a

Flow path length SAGA n/a

Length-slope factor SAGA n/a

Modified catchment area SAGA n/a

Relative slope position SAGA n/a

SAGA wetness index SAGA n/a

Stream power SAGA n/a

Vertical distance to channel SAGA n/a

Wetness index SAGA n/a

Geology (1 : 25 000 legacy map) n/a 423 ha (mean)

Predictor Resolution Date

AVIS – LAI-green leaf area 5 m 21 June 2005

AVIS – LAI-brown leaf area 5 m 21 June 2005

Ikonos 4 m, 4 bands 4 July 2006

Ikonos – panchromatic 1 m 4 July 2006

Ikonos – LAI 5 m 4 July 2006

Ikonos – dry matter 5 m 4 July 2006

Landsat 5 NDVI (USGS, 2014) 30 m 11 June 2006

Landsat 5 NDVI (USGS, 2014) 30 m 22 July 2006

Landsat 5 LandsatLook (USGS, 2014) 30 m, 3+ 1 band 20 June 2006

Landsat 5 LandsatLook (USGS, 2014) 30 m, 3+ 1 band 6 July 2006

Landsat 5 LandsatLook (USGS, 2014) 30 m, 3+ 1 band 22 July 2006

Landsat 5 LandsatLook (USGS, 2014) 30 m, 3+ 1 band 15 September 2006

Landsat 5 LandsatLook (USGS, 2014) 30 m, 3+ 1 band 17 October 2006

Landsat 5 TM (USGS, 2014) 30 m, 6 bands; 60 m, 1 band 11 June 2006

Landsat 5 TM (USGS, 2014) 30 m, 6 bands; 60 m, 1 band 22 July 2006

Landsat 5 SR (GLCF, 2014) 30 m, 7+ 2 bands 11 June 2006

Landsat 5 SR (GLCF, 2014) 30 m, 7+ 2 bands 22 July 2006

SOIL, 1, 217–233, 2015 www.soil-journal.net/1/217/2015/
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Within the extent of the study area, there were a few ar-

eas with conditions outside the range observed in the point

samples. In these limited cases, extreme predictor values pro-

duced model predictions of target variables either far below

or above the ranges observed for the respective target vari-

ables. To address this issue, spatial predictions were limited

to be within 10 % of the observed target variable’s minimum

and maximum.

2.3 Propagation of error

For each of the model rules, estimated error was calculated

based on the internal fit of the MLR to the data classified

within that rule. This estimation provided a measure for the

respective uncertainty under each rule. The conditions for the

respective rules were used to spatially classify the base maps,

thus allowing the estimated errors to be mapped. Measure-

ment error, positional error, and limitations of the model to

predict the target variable were all empirically encapsulated

by the estimated error.

When the target variable was the end product, the uncer-

tainty was simply represented by the estimated error. How-

ever, when multiple variables were modelled and subse-

quently used to calculate the final product, the estimated

errors of the component variables propagated through the

combination of those variables in the function. In order to

map estimated error for the indirect approach of modelling

SOCstock, estimated error maps were produced for each of

the component variables. These error estimation maps were

then combined using standard equations for propagation of

error (Mardia et al., 1979; Taylor, 1997; Weisstein, 2014).

Although potentially biased by the approximation to a first-

order Taylor series expansion, simplified equations for er-

ror propagation are more practical and are regularly used

in engineering and physical science applications (Goodman,

1960; Ku, 1966). Because covariance between variables has

the potential to impact the estimation of SOCstock (Panda et

al., 2008; Goidts et al., 2009), we did not assume the vari-

ables were independent. The observed residual covariance

was thus used to modify the estimated error within the stan-

dard equations for propagation of error by multiplication,

σf ≈ |f |

√(σA
A

)2

+

(σB
B

)2

+ 2
covAB

AB
, (2)

and by addition,

σf ≈

√
σ 2
A+ σ

2
B + 2covAB , (3)

where f is the result of the original function (to convert from

relative to estimated error), A and B are the real variables,

with estimated errors σA and σB , and their residuals’ covari-

ance covAB . In order to calculate a predicted relative error

(e.g. σA
A
) at unsampled locations, the predicted variable was

assumed to accurately represent the variable’s magnitude.

Locations with small ratios between estimated error and

predicted values together with large, negative covariances

had the potential to produce a calculation taking the square

root of a negative. This issue was addressed by not consider-

ing the covariance in those limited circumstances. While this

solution may have led to an overestimation of error, it pro-

vided a means to mathematically calculate estimated error

without declaring it to be zero.

3 Results

3.1 Models

3.1.1 Model building and fitting performance

Explicit models were obtained for each of the component

variables needed to calculate SOCstock indirectly and for pre-

dicting SOCstock directly. Models for predicting component

variables used a higher quantity of predictors for each of the

respective models than the direct modelling approach (Ta-

ble 3). With the exception of SOC%, the models for compo-

nent variables included a combination of DTA and spectral

variables. The SOC% models relied solely on DTA predic-

tors for both stocks, but with additional spatial partitioning

by geologic map units for the topsoil model. The models for

directly predicting the SOCstock used only three DTA predic-

tors for the topsoil and only four Landsat predictors for the

subsoil.

Fitting performances for the component variable models

were better than the fitting performances for the direct mod-

elling of SOCstock (Table 4). For the component variables,R2

values of subsoil models were only slightly less than the top-

soil models. SOC% was the exception by having the lowest

fitting performance for the subsoil stock (R2
= 0.55), while

the model for the SOC% topsoil was able to fit observations

with an R2 of 0.86. However, it was the aim of this research

to examine whether the performance of the models was main-

tained through the calculation of SOCstock.

Comparison of the SOCstock predictions by the indirect ap-

proach to observed values showed better performance for the

topsoil stock (R2
= 0.73) than for the subsoil stock (R2

=

0.34). Fitting performance for directly modelling SOCstock

showed the same pattern, but was lower than the indirect ap-

proach for both stocks. Analysis of the direct approach’s abil-

ity to fit observed values yielded an R2 of 0.58 for the topsoil

and 0.19 for the subsoil.

In general, calculated model efficiencies (ME) showed

that the respective models reduced the mean absolute error

(MAE) to about half the MAE that would result from sim-

ply using the mean of all points as the prediction. The SOC%

model for the topsoil improved upon the mean model more

than the other MLR models with a ME of 0.34. However, an

intriguing result is the lack of model efficiency for the indi-

rect modelling of the subsoil’s SOCstock. Despite the compo-

nent models all having MEs well below 1, the indirect ap-

www.soil-journal.net/1/217/2015/ SOIL, 1, 217–233, 2015
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Table 3. Relative use (%) of predictors in models derived by Cubist for the topsoil and subsoil stocks. BD: total bulk density (g cm−3); SK:

particles> 2 mm (%); SOC%: SOC concentration (%); H : stock thickness (cm); and SOCstock: mass of organic carbon per unit area of soil

(kg m−2).

Topsoil Subsoil

Rules MLR Predictor Rules MLR Predictor

BD BD

100 % 100 % Relative elev. – circ. (2000 m) 100 % 0 % Geology map units

51 % 100 % Landsat5 SR, band 7 (6 June 2006) 68 % 100 % LandsatLook, band 5 (6 July 2006)

17 % 100 % Relative elev. – rect. (20 m) 100 % Landsat5 NDVI (22 July 2006)

96 % LandsatLook, band 5 (17 October 2006) 100 % LandsatLook, band 6 (6 July 2006)

87 % Relative elev. – rect. (10 m) 100 % Landsat5 TM, band 1 (11 June 2006)

87 % Aspect, N central angle (215 m) 68 % Landsat5 SR, band 7 (22 July 2006)

83 % Landsat5 SR, band 2 (6 June 2006) 32 % Landsat5 SR, band QA (6 June 2006)

34 % SAGA wetness index 32 % Landsat5 SR, band 1 (22 July 2006)

13 % Relative elev. – circ. (800 m) 32 % Landsat5 SR, band 6 (22 July 2006)

SK SK

100 % 100 % TPI (70 m) 100 % 3 % Stream power

94 % 0 % Aspect class (70 m) 76 % 76 % Landsat5 SR, band 2 (11 June 2006)

39 % 16 % Relative elev. – rect. (550 m) 21 % 0 % Profile curvature (118 m)

37 % 14 % LandsatLook, band 6 (17 October 2006) 15 % 79 % Landsat5 SR, band 4 (6 June 2006)

94 % Relative elev. – rect. (1800 m) 85 % Catchment slope

84 % Landsat5 NDVI (11 June 2006) 76 % LandsatLook, band 3 (20 June 2006)

80 % Aspect, N central angle (50 m) 56 % Landsat5 NDVI (11 June 2006)

78 % Landsat5 TM, band 4 (20 June 2006) 56 % LandsatLook, band 4 (20 June 2006)

78 % Relative elev. – circ. (3000 m) 56 % Aspect, W central angle (70 m)

64 % Aspect, N central angle (130 m) 21 % SAGA wetness index

64 % Aspect, S central angle (345 m)

64 % Flow path length

37 % Aspect, N central angle (295 m)

H H

100 % 93 % Relative elev. – rect. (1100 m)

39 % 100 % LandsatLook, band 5 (15 September 2006) Cubist not used

34 % 34 % LandsatLook, band 5 (22 July 2006) (based on 2 m – topsoil thickness)

25 % 93 % Ikonos, band 2 (4 July 2006)

18 % 7 % LandsatLook, band 4 (17 October 2006)

100 % Relative elev. – rect. (1200 m)

93 % Ikonos, band 1 (4 July 2006)

93 % Relative elev. – rect. (1300 m)

74 % LandsatLook, band 4 (15 September 2006)

74 % TPI (1800 m)

74 % TPI (2600 m)

74 % Flow path length

28 % Relative elev. – circ. (650 m)

7 % Landsat5 TM, band 6 (11 June 2006)

proach did not improve upon the mean model for predicting

the subsoil SOCstock. Although the ME of the direct model

for subsoil SOCstock was also not as good as the other mod-

els, it was still an improvement over the mean model.

3.1.2 Model robustness

It is common for digital soil mapping models to be evaluated

by cross-validation procedures. However, in the context of

this study, the meaning of such an analysis has less utility.

Higher sample density increases the robustness of the model

(Minasny et al., 2013); thus the popularity of cross-validation

procedures over independent validation procedures in order

SOIL, 1, 217–233, 2015 www.soil-journal.net/1/217/2015/
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Table 3. Continued.

Topsoil Subsoil

Rules MLR Predictor Rules MLR Predictor

SOC% SOC%

100 % 0 % Geology map units 100 % 100 % Slope gradient (98 m)

49 % 39 % Relative elev. – rect. (3200 m) 74 % 74 % Stream power

39 % 69 % Relative elev. – rect. (2000 m) 55 % 55 % Plan curvature (138 m)

33 % 74 % Flow path length 74 % Slope gradient (90 m)

21 % 62 % Northness (155 m) 74 % Slope gradient (138 m)

81 % TPI (1200 m) 74 % Slope gradient (185 m)

80 % Relative elev. – rect. (250 m) 74 % Relative elev. – rect. (3400 m)

80 % Northness (345 m) 55 % Plan curvature (90 m)

74 % Aspect, W central angle (90 m) 19 % TPI (950 m)

69 % Relative elev. – circ. (1600 m) 19 % Vertical distance to channel

69 % TPI (1100 m)

62 % TPI (550 m)

62 % Northness (215 m)

62 % Eastness (345 m)

62 % Modified catchment area

32 % Aspect, W central angle (110 m)

21 % TPI (250 m)

21 % Aspect, W central angle (175 m)

12 % Northness (6 m)

SOCstock SOCstock

100 % 48 % Relative elev. – rect. (1100 m) 100 % LandsatLook, band 5 (6 July 2006)

48 % 100 % Vertical distance to channel 100 % LandsatLook, band 3 (6 July 2006)

80 % Channel network base level 100 % LandsatLook, band 6 (6 July 2006)

100 % Landsat5 TM, band 7 (11 June 2006)

to maintain more points in the calibration set. However, the

model generated for each cross-validation run is different be-

cause of differences in calibration sets. The performance of

each run is dependent on the randomly selected calibration

points’ ability to represent the variation in the remaining val-

idation points. For a simple data trend, a single outlier would

have minimal effect because only the runs in which it is in-

cluded in the validation set – and not used in calibrating the

model – would have lower performance values. However, in

a complex landscape where similar soil properties can re-

sult from different combinations of factors, the concept of

an outlier has many more dimensions (Johnson et al., 1990;

Phillips, 1998). A point with a similar value can be an out-

lier by being a product of a different set of factors. In other

words, the problem of induction continues to apply in pre-

dictive soil mapping. Further, in the context of error propa-

gation, the error estimation from the actual model used seems

more appropriate than the mean of error estimations from a

series of less robust models.

Nonetheless, the models in this study were cross-validated

using the k-fold method with 10 iterations. The R2 was

naturally reduced in the cross-validation analysis, but the

MAE was not as severely affected (Table 5). The R2 val-

ues for the respective models all decreased greatly in the

cross-validation, except for the topsoil SOC% and the subsoil

SOCstock models. The subsoil SOCstock model already had a

low R2 value for the internal fit. In contrast, the MAEs for

the cross-validation of the models were not increased enough

to present a practical problem. The relative stability of the

MAEs also suggests that the estimated uncertainties are also

robust. For example, the MAE for both stocks of BD only

increased 0.03 g cm−3. Also, the MAE for SOC% only in-

creased 0.13 and 0.03 % for the topsoil and subsoil, respec-

tively. Similarly, the MAE for the direct SOCstock model in-

creased 0.67 and 0.05 kg m−2 for the topsoil and subsoil, re-

spectively. The MAE for the models of stock H and SK did

increase more in cross-validation. However, they had a minor

impact on the indirect modelling of SOCstock. The increase of

5.9 cm for the topsoil H MAE was only a shift of the depth

estimated by topsoil or subsoil models. The larger MAE for

SK was more of an issue for the subsoil. However, the ma-

jority of the samples had SK below 5 %, leaving most of the

error due to the difficulty in predicting the limited areas of

high SK. While it was possible that a different sampling de-

sign could have improved the R2 values for cross-validation,

they are not always practical for landscape-scale mapping.
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Table 4. Fitting performance for the respective models. The

model’s efficiency (ME) is the ratio between the model’s mean ab-

solute error (MAE) and the MAE that would result from only using

the mean value as the model. Cubist reports the ME as relative er-

ror, but it is renamed here to avoid confusion with the more common

definition of relative error. An ME of greater than 1 indicates that

the model is not performing well.

Topsoil BD SK H SOC% Indirect – Direct –

models SOCstock SOCstock

MAE 0.05 1.36 5.90 0.14 1.69 2.27

ME 0.52 0.41 0.47 0.34 0.49 0.66

R2 0.69 0.85 0.71 0.86 0.73 0.58

Subsoil

models

MAE 0.06 3.77 5.90 0.06 2.75 1.37

ME 0.58 0.42 0.47 0.59 1.67 0.83

R2 0.67 0.79 0.71 0.55 0.34 0.19

3.1.3 Comparison with previous studies

It is difficult to compare results between SOC mapping stud-

ies due to differences in study areas and strategies for defin-

ing SOCstock (i.e. map extent and resolution, sampling den-

sity, and consideration of depth). Further, the differences be-

tween and variability within methods for estimating compo-

nent variables for calculating SOCstock can have a large im-

pact on results, especially bulk density (Liebens and Van-

Molle, 2003; Schrumpf et al., 2011) and SOC% (Lowther et

al., 1990; Soon and Abboud, 1991; Sutherland, 1998; Bow-

man et al., 2002). Also, because model performance is de-

pendent upon the provided predictors, results of different

studies can vary based on the predictors available to and de-

rived by the modeller (Miller et al., 2015). However, because

the area in this study has been used for several previous stud-

ies, some comparisons between methods can be made.

Kühn et al. (2009) examined many of the same samples

used in this study and found a coefficient of determination

between soil electrical conductivity and soil organic matter to

a 1 m depth (kg m−2) of R2
= 0.59. Although a slightly dif-

ferent calculation, that coefficient of determination is similar

to this study’s direct model of topsoil SOCstock (R2
= 0.58),

which used three DTA predictors. However, for the top-

soil, the indirect approach in this study produced a SOCstock

model with less estimated error and an R2 of 0.73. The Kühn

et al. (2009) study usually included depths that this study de-

fined as subsoil, where the models in this study did not per-

form as well (direct R2
= 0.19, indirect R2

= 0.34).

For the same area as this study, Selige et al. (2006) com-

pared MLR and partial least-squares regression for predict-

ing SOC% from hyperspectral data with a 6 m spatial res-

olution. Although the study by Selige et al. (2006) utilized

a higher spectral resolution, the MLR models produced by

both that study and the present study had an R2 of 0.86 for

Table 5. Cross-validation performance for the respective models.

Note that although the R2 was severely reduced for most models,

the MAE was generally only increased a small amount.

Topsoil BD SK H SOC% Direct –

models SOCstock

MAE 0.08 2.70 11.80 0.27 2.94

ME 0.86 0.82 0.93 0.66 0.85

R2 0.26 0.08 0.12 0.61 0.27

Subsoil

models

MAE 0.09 7.18 11.80 0.09 1.42

ME 0.80 0.80 0.93 0.98 0.86

R2 0.36 0.26 0.12 0.05 0.17

the topsoil SOC%. In the present study, Cubist was able to

compensate for the limited spectral information by utilizing

several DTA predictors that were available at a high spatial

resolution.

3.2 SOCstock maps

Application of the obtained models and aggregation of the

component variable maps by Eq. (1) produced maps of pre-

dicted SOCstock for the topsoil and subsoil (Figs. 2 and 3).

The respective topsoil and subsoil maps were added together

to produce a total SOCstock map to a depth of 2 m (Fig. 4).

Although some field boundaries were observed, the domi-

nant pattern appeared to be associated with terrain features.

This interpretation was supported by the number of DTA pre-

dictors selected by Cubist for many of the models. However,

it would not have been safe to assume this pattern from the

list of selected predictors alone. Certain predictors (i.e. spec-

tral data reflecting land use patterns) could have dominated

calculations without being the most frequently selected cate-

gory of predictors.

The map derived from the direct approach for modelling

the topsoil SOCstock emphasizes drainageways. Whereas the

map derived by the same approach for the subsoil SOCstock

reflects more patterns of land use, especially in the uplands

in the southern part of the study area. The topsoil SOCstock

map based on the indirect approach has similar overall pat-

terns to the direct approach’s map. However, both the topsoil

and subsoil maps produced by the indirect approach display

greater spatial variation.

Patterns in the topsoil SOCstock map, based on the indi-

rect approach, mostly coincide with terrain features, but do

contain some transitions that align with field boundaries. The

corresponding map for the subsoil reflects patterns of micro-

topography and slope gradient. Larger values for the subsoil

SOCstock are predicted by the indirect approach for local lows

in elevation (smaller a-scales). Predictions of larger subsoil

SOCstock on steeper slopes result from the modelling of thin-
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Figure 2. Topsoil SOCstock modelled by (a) the direct approach

and (b) the indirect approach. Overlaid on a hillshade to show rela-

tionship with relief and field boundaries.

Figure 3. Subsoil SOCstock modelled by (a) the direct approach

and (b) the indirect approach. Overlaid on a hillshade to show rela-

tionship with relief and field boundaries.

ner topsoil stocks in these areas and the consistent calculation

of a 2 m profile. Consequently, the subsoil is calculated to

be thicker in these areas, substantially increasing the subsoil

SOCstock prediction compared to other areas of the subsoil.

Maps derived by both approaches for the total SOCstock

primarily reflected patterns from the topsoil maps because

of the higher concentration of SOC that defined the top-

soil stock. Nonetheless, modelled storage for the subsoil

stock contributed about one-third of the prediction of total

SOCstock and recognized additional complexity in the SOC

landscape. Despite the greater variation in the indirect ap-

proach’s prediction of SOCstock, the difference between esti-

mates of total SOCstock by the two approaches were within

Figure 4. Total SOCstock (topsoil+ subsoil) modelled by (a) the di-

rect approach and (b) the indirect approach. Overlaid on a hillshade

to show relationship with relief and field boundaries.

5 kg m−2 for the majority of the map area (Fig. 5). Also, the

summed SOCstock for the study area was only 6 % more for

the indirect (1.9 Mt) versus the direct (1.8 Mt) approach. The

mean SOCstock estimate for the study area by the direct ap-

proach was 14.7 kg m−2, whereas the indirect approach esti-

mated 15.7 kg m−2.

These aggregated landscape estimates agreed with those

made by the Harmonized World Soil Database (HWSD;

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) for this area. The

HWSD estimated several soil properties from taxonomic pe-

dotransfer functions for static topsoil (0–30 cm) and sub-

soil (30–100 cm) depth zones. Within the area of the present

study, the HWSD has a cell resolution of approximately

765 m. Calculating SOCstock from those data yielded a mean

of 8.8 kg m−2. Assuming the characteristics of the subsoil

to 100 cm extended to 200 cm, the mean SOCstock would be

15.3 kg m−2.

3.3 Error estimations

The mapping of estimated errors based on the conditions of

rules generated by Cubist resulted in a spatial representation

of uncertainty (Fig. 6). In order to calculate the final esti-

mated errors for the indirect approach, estimated errors for

models of component variables were combined spatially us-

ing Eqs. (2) and (3). Due to the known covariance of compo-

nent variables, the observed covariance of the residuals was

included in the calculation of error propagation through the

calculation of the total SOCstock. Inclusion of covariance re-

duced relative error estimates in the topsoil because increases

in residuals for BD coincided with decreases in the residuals

for percent fine earth, increases in fine-earth BD residuals

coincided with decreases in SOC% residuals, and increases

in SOC content (kg m−3) residuals coincided with decreases

www.soil-journal.net/1/217/2015/ SOIL, 1, 217–233, 2015



226 B. A. Miller et al.: Comparison of spatial association approaches for landscape mapping

Figure 5. Calculated difference between the direct and indirect

approaches of modelling the total SOCstock. Negative values are

where the indirect approach predicted more SOCstock than the di-

rect approach and positive values are where the indirect approach

predicted less.

in stock thickness residuals. The influence of covariance was

mostly the same in the subsoil calculations. The exception

was a positive covariance between the residuals for mod-

elling BD and the percent fine earth. Nonetheless, the co-

variances were relatively small with respect to the estimated

errors and therefore had a minimal impact on the final calcu-

lation of estimated error.

The application of error estimates based on the full range

of predicted values in a rule zone to small values in that zone

yielded extremely high relative error values. Although the

areal extent for this type of situation was very limited, the is-

sue needed to be addressed in order to maintain the readabil-

ity of the attribute scale. Therefore relative error was capped

at one for the original relative error grids, but not thereafter

for the calculation of error propagation.

Despite not having as strong of a fitting performance as the

indirect approach, the direct approach had lower estimated

errors for greater extents of the study area. The mean esti-

mated error for the total SOCstock map derived by the direct

approach was 2.81 kg m−2, compared to 8.17 kg m−2 for the

indirect approach. This behaviour in the models may be ex-

plained by the negative covariance between the residuals for

many of the variables influencing the SOCstock. The observed

covariances did reduce the calculation of error through prop-

agation. However, they did not reduce the estimated error for

the indirect approach to as low as the estimated error based

on the direct modelling approach. It is also useful to note that

the residuals for modelling SK and SOC% had a negative and

positive skew, respectively, for both stocks (Table 6). Of the

residuals for the final prediction of SOCstock, regardless of

approach or stock, only the indirect model for the subsoil

Figure 6. Estimated relative error for the total SOCstock modelled

by (a) the direct approach and (b) the indirect approach.

had strongly skewed residuals. This suggests that error for

the indirect model of the subsoil SOCstock may have been

overestimated.

The spatial distribution of model rules was an important

factor in the resulting maps’ estimated error. The models

for the direct approach used fewer rules than the compo-

nent variable models, resulting in less spatial variation in the

estimated error. However, variation in predicted values did

introduce additional spatial variation to the mapping of rel-

ative error. Nonetheless, the map of relative error from the

indirect approach was more complex than that resulting from

the direct approach. In addition to using more rules for each

model, the combined relative estimated error for the indirect

approach was further tessellated by the unique intersections

of the different spatial distributions of the rules for each com-

ponent variable model.

4 Discussion

4.1 Predictor selection

4.1.1 Review of relationships between predictors and

environmental conditions

Spectral predictors from satellites such as Ikonos and Land-

sat have most commonly been used to detect characteristics

of land use, vegetation, and soil water content (Bannari et

al., 1995; Xie et al., 2008). However, they have also been

used to detect mineralogy on sparsely vegetated areas (Mul-

der et al., 2011). Although Ikonos has a finer spatial resolu-

tion, it is limited to three bands (band 1: blue; band 2: green;

and band 3: red) in the visible spectrum, plus a near-infrared

band (band 4: NIR). Landsat provides additional bands in

the shortwave infrared (band 5: SWIR-1; band 7: SWIR-2)

and thermal infrared (band 6: TIR). The relative reflectance
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Table 6. Skewness coefficients for the residuals of each model.

BD SK H SOC% Indirect – Direct –

SOCstock SOCstock

Topsoil models −0.25 −1.15 0.17 1.04 0.10 0.37

Subsoil models 0.11 −0.74 −0.17 1.18 −1.61 −0.16

of a single band can be used to distinguish landscape con-

ditions. For example, the green band can be used to distin-

guish different vegetation from bare soil. However, combi-

nations of bands – particularly including the red and NIR

bands – have been even more useful for distinguishing the

spectral signature of different land uses (Richards, 2006) and

the condition of the vegetation (Ashley and Rea, 1975; My-

neni et al., 1995; Rasmussen, 1998; Daughtry, 2001; Hatfield

et al., 2008). Additional use of TIR emission would resem-

ble methods such as the surface temperature/vegetation index

for estimating soil moisture (Bartholic et al., 1972; Heilman

et al., 1976; Carlson et al., 1994; Li et al., 2009; Petropoulus

et al., 2009). Similarly, use of SWIR wavelengths in concert

with red and infrared bands would be a way of compensat-

ing for the changing effect of soil reflection in dry to wet

conditions (Huete, 1988; Lobell and Asner, 2002). Relation-

ships between bands in the visible to SWIR range have also

been used to predict SOC% and its biochemical composition

(Bartholomeus et al., 2008; Gomez et al., 2008; Stevens et

al., 2010).

Spectral predictors have been used for both classifica-

tion of discrete phenomenon and quantification of continu-

ous phenomenon on the landscape. Because of the rule-based

MLR structure of the Cubist models, spectral predictors used

for conditional rules were more likely to be distinguishing

discrete features (e.g. vegetation/land use type) than when

used within an MLR equation. Continuous features (e.g. veg-

etation health) were more likely to be represented in MLR

equations.

DTA predictors in this study were all derived from the

lidar data for elevation. The land-surface derivatives (e.g.

slope gradient, relative elevation) described the surface ge-

ometry with which the climate interacts. For example, as-

pect has been shown to influence the amount of solar in-

solation a hillslope receives (Hunckler and Schaetzl, 1997;

Beaudette and O’Geen, 2009). The surface geometry is also

known to direct water flow, which affects erosion processes

and groundwater recharge (Huggett, 1975; Zevenbergen and

Thorne, 1987). Hydrologic predictors (e.g. flow accumula-

tion, catchment slope) provided additional information about

the relative volume and energy that the water flow may have

(Moore et al., 1991; Wilson and Gallant, 2000).

4.1.2 Topsoil model predictors

All of the topsoil models generated by Cubist relied on DTA

predictors the most. Of those predictors, different a-scales of

relative elevation, topographic position index (TPI), and as-

pect were the most commonly used. With the exception of

the direct SOCstock model, every topsoil model also included

one or two predictors indicative of flow accumulation (i.e.

flow path length, SAGA wetness index, or modified catch-

ment area).

Aspect at different a-scales influenced predictions for

three of the indirect topsoil models. The Cubist-generated

model identified decreasing topsoil SOC% on more north fac-

ing slopes (155 m a-scale), which corresponds to a poten-

tial decrease in plant productivity due to less solar insola-

tion. Aspect (215 m a-scale) was also used to predict higher

topsoil BD on south- to west-facing slopes, especially on to-

pographic (2000 m a-scale) and microtopographic (20 m a-

scale) highs. Additionally, aspect at a variety of a-scales was

used to predict decreasing topsoil SK for low-TPI areas fac-

ing southeast to southwest. Together, these models suggested

a pattern of increased erosion and deposition along the south-

ern sides of hillslopes. This type of pattern has been observed

before in other landscapes and has been attributed to topo-

climatic differences such as exposure to storms, differences

in temperature regime, rainfall effectiveness, or vegetation

density (Kennedy, 1976; Churchill, 1981; Cuff, 1985; van

Breda Weaver, 1991).

Although DTA parameters dominated the topsoil models,

their predictions were often modified by spectral variables.

For example, the primary distinction for predicting topsoil

H was between low and high relative elevations. Low rela-

tive elevations had a mean topsoil H that was about 20 cm

thicker than high relative elevations (1100 m a-scale). Within

most MLR equations, however, predictions were increased

by less blue and more green reflectance in early July. This

combined use of blue and green bands indicated increasing

topsoil H with more productive vegetation on wetter soils.

In summary, the dominant pattern identified by the model

matched the pattern of high and low ground (Bushnell, 1943;

Sommer et al., 2008), but the degree of topsoil thinning or

thickening was predicted by the vegetation’s response to soil

conditions.

Cubist selected a much simpler combination of only DTA

predictors to directly model the topsoil SOCstock. In gen-

eral, the model predicted increasing SOCstock with decreas-

ing vertical distance to channel. Areas low in relative ele-

vation (1100 m a-scale) and not far above the channel net-

work were predicted to have the largest SOCstock. However,

for areas low in relative elevation, but sufficiently above the
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DEM based channel network, the model predicted the oppo-

site trend of the SOCstock decreasing with decreasing verti-

cal distance to channel. This pattern identified by the model

may be explained by a corresponding pattern observed in the

model for the topsoil H . In that model, areas low in relative

elevation (1100 m a-scale) were predicted to have some of the

thickest topsoil stocks. However, within a few of those zones

the modelled topsoilH decreased with decreasing relative el-

evation and TPI. This trend in the observed data, as detected

by Cubist, was potentially caused by an eroding-out of top-

soil sediments closer to the centre of drainageways, in which

case, the vertical distance to channel – used in the topsoil

SOCstock model – may have been more an indicator of prox-

imity to the channel than wetness; the threshold was only

0.5 m above the channel modelled from the DEM. Predictors

related to surface flow energy would have been expected to

be better predictors of this kind of process. However, the up-

slope drainage network for much of the map area extended

beyond the boundaries of the available data. Thus the use of

local elevation data may have been a better proxy in this case

compared to the predictors calculated from truncated water-

sheds.

4.1.3 Subsoil model predictors

With the exception of SOC%, the subsoil models all used

several predictors from Landsat. Selection of Landsat pre-

dictors for subsoil models suggested that vegetation charac-

teristics or surface soil moisture at different times of the year

indicated subsoil conditions. In contrast, the subsoil SOC%

model’s complete dependence on DTA predictors suggested

that soil property was mostly related to hydrology and that

vegetation had little response to or effect on the SOC content

in the subsoil.

An example of spectral predictors detecting vegetation

characteristics that likely reflected subsoil conditions was the

subsoil SK model. All of the MLR equations were strongly

influenced by the predictors of stream power, catchment

slope, or SAGA wetness index. However, the SK predictions

were modified by green reflectance in June and additional

Landsat predictors collected at different times of the year that

related to the vigour of the vegetation. The weaker or drier

the vegetation appeared, the higher the prediction of SK con-

tent in the subsoil. Assuming soil moisture conditions did not

reach detrimental levels that year, these patterns fit known re-

lationships between particle size, soil drainage, and timing to

crop maturity (Day and Intalap, 1970; Rawls et al., 1982).

The generated model for subsoil BD most likely utilized

a relationship with soil moisture as detected by spectral pre-

dictors. In all areas, the MLR equations decreased predic-

tions of subsoil BD with increasing reflectance in the blue

and SWIR-1 bands along with increasing emission in the TIR

band. Increases in the normalized difference vegetation index

(NDVI) were used to slightly increase predictions of subsoil

BD. The use of the NDVI to offset the decreasing BD pre-

dicted by the other Landsat predictors suggested those vari-

ables were indicating soil moisture conditions. Locations that

are wetter due to surface runoff would have a greater poten-

tial for organic material to be translocated deeper in the soil

profile (Schaetzl, 1986, 1990). Also, the association of wetter

environments with cooler temperatures and anaerobic condi-

tions would also inhibit decomposition (Gates, 1942; Krause

et al., 1959; Frazier and Lee, 1971).

The subsoil SOC% model was different than the other sub-

soil models generated. Instead of selecting spectral predic-

tors, the subsoil SOC% model relied solely on DTA pre-

dictors. The model predicted the highest subsoil SOC% on

steeper mid-slopes. The pattern of increasing subsoil SOC%

from the upper to middle slope fit the landscape translocation

model proposed by Sommer et al. (2000). In that study, the

SOC% in the Bh horizon increased from the upper slope to

the midslope due to lateral translocation. Different than the

pattern identified in the present study, the data in Sommer

et al. (2000) showed a continued increase in the SOC% of

Bh horizons in the downslope position. However, this con-

tradiction may be partially explained by aggradation where

the slope gradient declines and the topsoil stock has been

overthickened by developmental upbuilding (McDonald and

Busacca, 1988; Almond and Tonkin, 1999). Also, lateral flow

would be expected to return closer to the surface at downs-

lope positions. In Sommer et al. (2000), while the upslope

and midslope profiles had E horizons separating the Bh from

A horizons, the downslope Bh horizons were exceptionally

thick, with little to no division between them and the A hori-

zon. In that situation, the definition of topsoil used in the

present study would have grouped the downslope Bh hori-

zons into the topsoil stock. Therefore, the Cubist-generated

model may have been a simplification of the complex inter-

action between topography and lateral flow depth and direc-

tion.

The rule groups for subsoil SOC% also differentiated for

the plan curvature where the slope gradient was not too

high and the stream power index (SPI) was not too low.

Concave plan curvatures (138 m a-scale) were predicted to

have increasingly higher and convex plan curvatures were

predicted to have increasingly lower subsoil SOC%. This

relationship with plan curvature matches patterns of water

movement identified to be important to soil formation by

Huggett (1975), where convergent footslopes have the high-

est deposition rates (Pennock and De Jong, 1987). Assum-

ing the absence of any restrictive layer below, areas with the

highest sediment deposition rates would be expected to also

have the highest volume of water infiltration.

The Cubist-generated model for predicting the subsoil

SOCstock was simpler than any of the indirect component

models. It used only one MLR equation to relate red and

infrared predictors to subsoil SOCstock. This model pre-

dicted more SOCstock storage with increasing reflectance

in the red and SWIR-2 bands along with increasing emis-

sion in the TIR band – primarily captured on 6 July. Of
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these variables, model predictions were dominated by in-

creasing reflectance in the red band increasing the estimated

subsoil SOCstock. This suggested less productive vegetation

corresponding with larger subsoil SOCstock. This trend was

counter to the patterns observed in the topsoil models, but

was sensible in the context of how the subsoil stock was de-

fined for this study. Although the total SOCstock was less in

areas with lower plant productivity, the subsoil SOCstock was

larger relative to other subsoil areas due to the inverse rela-

tionship between topsoil and subsoil H used in this study.

A thicker topsoil stock would mean a thinner subsoil stock

– and vice versa – due to the 2 m depth limit. Regarding

the other predictors in this model, increases in SWIR-2 re-

flectance could have indicated more plant productivity. How-

ever, its use with the TIR band suggested that together they

were indicators of wetter soil conditions.

4.2 Unconventional predictor selections

The Cubist software made some intriguing selections in re-

gard to predictors that were calculated using alternative ap-

proaches. One example of this was the selection of alternative

types of aspect predictors. The conversion of aspect to north-

ness and eastness is generally considered to be the preferred

method for addressing the circular problem of using aspect

as a predictor. In our approach of including many different

predictors in the available pool, we also experimented with

simply rotating the central angle (position of 0◦) to each car-

dinal direction for creating different aspect predictors. In the

models generated for this study, northness and eastness were

only selected for the topsoil SOC% model. In contrast, ro-

tated versions of aspect were selected for the topsoil SOC%,

topsoil BD, and the topsoil and subsoil SK models.

Another example of an intriguing predictor selection by

Cubist was the use of bands from the LandsatLook products.

These images were limited to four bands (SWIR-1, NIR, red,

and TIR) and were smoothed by an algorithm to facilitate im-

age selection and visual interpretation. Although the USGS

does not recommend the use of these files for data analysis,

the Cubist data mining found them to be more useful than the

data without LandsatLook processing. Most of these selec-

tions can be explained by the greater variety of LandsatLook

dates provided in the predictor pool. However, there were a

few instances where Cubist chose LandsatLook data over the

unprocessed version of the same Landsat data.

4.3 Error propagation

Although both the direct and indirect modelling approaches

had base maps with a 2 m resolution available to them,

the direct modelling approach produced a more generalized

SOCstock map. In terms of predicted error, the cost of try-

ing to account for the variation in all of the variables re-

lated to the SOCstock appeared to be larger relative errors.

The SOCstock model from the direct approach, on the other

hand, did not attempt to predict as many variations occur-

ring at small phenomenon scales. Because these very local

variations were difficult to predict, the estimated error for the

direct approach was less than for the indirect approach for

most of the map area. Therefore, it may be appropriate to

consider the direct modelling approach to be a conservative

approach for estimating the SOCstock for landscapes.

Possible sources of error in the base maps included atmo-

spheric conditions for the satellite data and the estimation

of bare-earth elevation under dense vegetation for the DEM.

Several spectral capture dates were made available in the pre-

dictor pool to enable Cubist to not only select the optimal

changes in seasonal vegetation characteristics but to also se-

lect the image with minimal noise from atmospheric effects

such as clouds. Fewer options were available for DTA predic-

tors, because all DTA predictors needed to be derived from

the same high-resolution DEM. The effect of anomalies in

the elevation data was more pronounced for larger a-scales.

For example, a small forest plot – located roughly between

the two larger cities in the centre of the map area – had not

been fully filtered out by the bare-earth algorithm. Any DTA

calculation that included this area in its analysis neighbour-

hood was incorrectly influenced by those elevation values.

The impact on this study’s models was an increased predic-

tion of SOCstock in the surrounding area.

The error propagation method used in this study could not

directly account for errors in the base maps. Instead, it could

only quantify the combined model, base map, and target vari-

able error observed at sample locations. Although none of the

sample points were in proximity to the before mentioned er-

ror in the DEM, this phenomenon of elevation error affecting

scale-dependent predictors would have applied universally,

even where the error was less obvious. The higher relative er-

ror for both mapping approaches in the area surrounding the

known problem in the DEM suggested this potential source

of error was at least partially accounted for.

5 Conclusions

This study demonstrated the use of spatial association to pre-

dict the SOCstock and the estimated error at unsampled lo-

cations within a 122 km2 landscape at a high resolution. The

Cubist data mining software detected patterns in the observed

soil data, which were used to predict soil properties in the

greater map region. The ability of the available base maps to

predict the variation of those soil properties was quantified

for each conditional rule of the respective models. The spa-

tial characteristics of the model rules allowed the uncertainty

to be mapped along with the target variable prediction.

There were two main advantages to using data mining soft-

ware to produce relatively simple model structures. First, pat-

terns between the predictors and target variables were objec-

tively identified. Second, the resulting models were simple

enough to be interpreted by the user and related to known
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processes in the soil system. A relationship between selected

predictors and known processes provided confidence that

their use in the model was not coincidental. The separate

modelling of topsoil and subsoil stocks identified a general

division between useful predictors for predicting soil prop-

erties at different depths. The data mining in this study sug-

gested that DTA predictors tend to be most useful for topsoil

properties, while spectral characteristics of vegetation and

soil moisture tend to be more useful for indicating subsoil

properties.

Direct and indirect approaches were tested for predicting

the SOCstock with the rule-based, MLR spatial modelling

method. Although the spatial patterns in the two maps were

generally similar, the indirect approach produced a map with

more spatial variation. While attempting to account for more

sources of variability resulted in less estimated error for the

topsoil (indirect MAE= 1.69, direct MAE= 2.27), the in-

direct approach had a higher potential for error in the sub-

soil (indirect MAE= 2.75, direct MAE= 1.37). Because the

direct approach accounts for less variation (topsoil: direct

R2
= 0.58, indirect R2

= 0.73; subsoil: direct R2
= 0.14, in-

direct R2
= 0.34), but also results in a lower total MAE (di-

rect MAE= 3.64, indirect MAE= 4.44), it should be consid-

ered a more conservative prediction of the SOCstock’s spatial

distribution. The choice of which approach is best will likely

depend on a given situation’s need to prioritize the represen-

tation of spatial pattern or to minimize estimated error.
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