
SOIL, 1, 103–116, 2015

www.soil-journal.net/1/103/2015/

doi:10.5194/soil-1-103-2015

© Author(s) 2015. CC Attribution 3.0 License.

SOIL

Coupled cellular automata for frozen soil processes

R. M. Nagare1,*,**, P. Bhattacharya2,**, J. Khanna3,**, and R. A. Schincariol1

1Department of Earth Sciences, The University of Western Ontario, London, Canada
2Department of Geosciences, Princeton University, Princeton, USA

3Atmospheric and Oceanic Sciences, Princeton University, Princeton, USA
*now at: WorleyParsons Canada Services Ltd., Edmonton, Canada

**These authors contributed equally to this work.

Correspondence to: R. M. Nagare (ranjeet.nagare@worleyparsons.com)

Received: 4 May 2014 – Published in SOIL Discuss.: 21 May 2014

Revised: – – Accepted: 26 August 2014 – Published: 14 January 2015

Abstract. Heat and water movement in variably saturated freezing soils is a strongly coupled phenomenon. The

coupling is a result of the effects of sub-zero temperature on soil water potential, heat carried by water moving un-

der pressure gradients, and dependency of soil thermal and hydraulic properties on soil water content. This study

presents a one-dimensional cellular automata (direct solving) model to simulate coupled heat and water transport

with phase change in variably saturated soils. The model is based on first-order mass and energy conservation

principles. The water and energy fluxes are calculated using first-order empirical forms of Buckingham–Darcy’s

law and Fourier’s heat law respectively. The liquid–ice phase change is handled by integrating along an experi-

mentally determined soil freezing curve (unfrozen water content and temperature relationship) obviating the use

of the apparent heat capacity term. This approach highlights a further subtle form of coupling in which heat car-

ried by water perturbs the water content–temperature equilibrium and exchange energy flux is used to maintain

the equilibrium rather than affect the temperature change. The model is successfully tested against analytical

and experimental solutions. Setting up a highly non-linear coupled soil physics problem with a physically based

approach provides intuitive insights into an otherwise complex phenomenon.

1 Introduction

Variably saturated soils in northern latitudes undergo re-

peated freeze–thaw cycles. Freezing reduces soil water po-

tential considerably because soil retains unfrozen water

(Dash et al., 1995). The resulting steep hydraulic gradients

move considerable amounts of water upward from deeper

warmer soil layers which accumulates behind the freezing

front. The resulting redistribution of water alters soil ther-

mal and hydraulic properties, and transports heat from one

soil zone to another. As water freezes into ice, the latent

heat maintains soil temperatures close to 0 ◦C for long pe-

riods of time. The water and energy redistribution has sig-

nificant implications for regional hydrology, infrastructure

and agriculture. Understanding the physics behind this com-

plex coupling remains an active area of research. Field stud-

ies have been widely used to better understand the mecha-

nism of these thermohydraulic cycles (e.g. Hayashi et al.,

2007). Innovative column studies under controlled labora-

tory settings have allowed for further insights by isolating

the effects of factors that drive soil freezing and thawing, a

separation impossible to achieve in the field (e.g. Nagare et

al., 2012). Mathematical models, describing the mechanism

of water and heat movement in variably saturated freezing

soils, have been developed to complement these observa-

tional studies. Analytical solutions of freezing and thawing

front movements have been developed and applied (e.g. Ste-

fan, 1889; Hayashi et al., 2007) and numerical models have

replicated the freezing-induced water redistribution with rea-

sonable success (e.g. Hansson et al., 2004). The optimization

of existing numerical modelling approaches also remains an

active area of research. For example, improvements to nu-

merical solving techniques to address sharp changes in soil

properties, especially behind freezing and thawing fronts,
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and during special conditions such as infiltration into frozen

soils have been reported recently (e.g. Dall’Amico et al.,

2011).

Although the coupling of heat and water movement in

variably saturated freezing soils is complex, fundamental

laws of heat and water movement coupled with principles of

energy and mass conservation are able to explain the physics

to a large extent. There is a paradigm shift in modelling

of water movement in variably saturated soils using physi-

cally based approaches. For example, HydroGeoSphere and

Parflow (Brunner and Simmons, 2012; Kollet and Maxwell,

2006) are examples of codes that explicitly use Richard’s

equation to model subsurface flow. Thus, the use of de-

rived terms such as specific yield is not required. Mendicino

et al. (2006) reported a three-dimensional (3-D) CA (cel-

lular automata; direct solving) model to simulate moisture

transfer in the unsaturated zone. Cervarolo et al. (2010) ex-

tended the application of this CA model by coupling it with

a surface–vegetation–atmosphere-transfer scheme to simu-

late water and energy flow dynamics. Direct solving allows

for unstructured grids while describing the coupled processes

based on first-order equations. Use of discrete first-order for-

mulations allow one to relax the smoothness requirements for

the numerical solutions being sought. This has advantages,

particularly in large-scale models, wherein use of relatively

coarse spatial discretization may be feasible. Therefore, it is

important to expand the application of direct solving to fur-

ther complicated unsaturated soil processes.

This study presents a coupled CA model to simulate heat

and water transfer in variably saturated freezing soils. The

system is modelled in terms of the empirically observed

heat and mass balance equations (Fourier’s heat law and

Buckingham–Darcy equation) and using energy and mass

conservation principles. The liquid–ice phase change is han-

dled with a total energy balance including sensible and latent

heat components. In a two-step approach similar to that of

Engelmark and Svensson (1993), the phase change is brought

about by the residual energy after sensible heat removal has

dropped the temperature of the system below freezing point.

Knowing the amount of water that can freeze, the change in

soil temperature is then modelled by integrating along the

soil freezing curve. To our knowledge, coupled cellular au-

tomata have not yet been used to explore simultaneous heat

and water transport in frozen variably saturated porous me-

dia. The model was validated against the analytical solu-

tions of (1) the heat conduction problem (Churchill, 1972),

(2) steady state convective and conductive heat transport in

unfrozen soils (Stallman, 1965), (3) unilateral freezing of

a semi-infinite region (Lunardini, 1985), and (4) the exper-

imental results of freezing-induced water redistribution in

soils (Mizoguchi, 1990).

2 Cellular automata

Cellular automata were first described by von Neumann in

1948 (see von Neumann and Burks, 1966). The CA describe

the global evolution of a system in space and time based on

a predefined set of local rules (transition rules). Cellular au-

tomata are able to capture the essential features of complex

self-organizing cooperative behaviour observed in real sys-

tems (Ilachinski, 2001). The basic premise involved in CA

modelling of natural systems is the assumption that any het-

erogeneity in the material properties of a physical system is

scale dependent and there exists a length scale for any sys-

tem at which material properties become homogeneous (Hutt

and Neff, 2001). This length scale characterizes the construc-

tion of the spatial grid cells (elementary cells) or units of the

system. There is no restriction on the shape or size of the

cell with the only requirement being internal homogeneity

in material properties in each cell. One can then recreate the

spatial description of the entire system by simple repetitions

of the elementary cells. The local transition rules are results

of empirical observations and are not dependant on the scale

of homogeneity in space and time. The basic assumption in

traditional differential equation solutions is of continuity in

space and time. The discretization in models based on tradi-

tional numerical methods needs to be over grid spacing much

smaller than the smallest length scale of the heterogeneous

properties making solutions computationally very expensive.

The CA approach is not limited by this requirement and is

better suited to simulate spatially large systems at any res-

olution, if the homogeneity criteria at elementary cell level

are satisfied (Ilachinski, 2001; Parsons and Fonstad, 2007).

In fact, in many highly non-linear physical systems such as

those describing critical phase transitions in thermodynam-

ics and the statistical mechanical theory of ferromagnetism,

discrete schemes such as cellular automata are the only sim-

ulation procedures (Hoekstra et al., 2010).

On the contrary, explicit schemes like CA are not uncondi-

tionally convergent and hence given a fixed space discretiza-

tion, the time discretization cannot be arbitrarily chosen. An-

other limitation of the CA approach was thought to be the

need for synchronous updating of all cells for accurate simu-

lations. However, CA models can be made asynchronous and

can be more robust and error resistant than a synchronous

equivalent (Hoekstra et al., 2010).

The following section (Sect. 2.1) describes a 1-D CA in

simplified, but precise mathematical terms. It is then ex-

plained with an example of heat flow (without phase change)

in a hypothetical soil column subjected to a time varying tem-

perature boundary condition.

2.1 Mathematical description

Let Sti be a discrete state variable which describes the state

of the ith cell at time step t . If one assumes that an or-

der of N elementary repetitions of the unit cell describe
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the system spatially, then the complete macroscopic state

of the system is described by the ordered Cartesian prod-

uct St1⊗ S
t
2⊗ . . .⊗ S

t
i ⊗ . . .⊗ S

t
N at time t . Let a local tran-

sition rule φ be defined on a neighbourhood of spatial indi-

cial radius r,φ: Sti−r⊗S
t
i−r+1⊗ . . .⊗S

t
i+r → St+1

i , where iε

[1+ r , N − r]. The global state of the system is defined by

some global mapping, χ : St1⊗S
t
2⊗ . . .⊗S

t
i ⊗ . . .⊗S

t
N →Gt ,

where Gt is the global state variable of the system defining

the physical state of the system at time t . Given this algebra

of the system, Gt+1 is given by

Gt+1
= (1)

χ
(
ϕ
(
ωt1
)
⊗ϕ

(
ωt2
)
⊗ . . .⊗ϕ

(
ωti
)
⊗ . . .⊗ϕ

(
ωtN
))
,

where ωti = S
t
1−r⊗S

t
i−r+1⊗. . .⊗S

t
i+r . The quantity r is gen-

erally called the radius of interaction and defines the spatial

extent on which interactions occur on the local scale. In the

case of the 1-D CA, the only choice of neighbourhood which

is physically viable is the standard von Neumann neighbour-

hood (Fig. 1).

2.2 Physical description based on a heat flow problem

in a hypothetical soil column

Let us consider the CA simulation of heat flow in a soil col-

umn of length Lc and a constant cross-sectional area. The

temperature change in the column is driven by a time vary-

ing temperature boundary condition applied at the top. It is

assumed that no physical variation in the soil properties exist

in the column at length intervals smaller than 1x. Each cell

in the 1-D CA model can therefore be assumed to be of length

1x. Therefore, the column can be discretized using Lc/1x

elementary cells. To simulate the spatio-temporal evolution

of soil temperature in the column, an initial temperature for

each elementary cell has to be set. To study the behaviour

of the soil column under external driving (time varying tem-

perature), a fictitious cell is introduced at the top and/or the

bottom of the soil column and subjected to time varying tem-

peratures. The transition rules need to be defined now. Once

the transition rules of heat exchange between neighbours are

defined, the fictitious boundary cells interact with the top

and/or bottom cells of the soil column as any other internal

cell based on the prescribed rules and the predefined temper-

ature time series. Although the same set of rules govern inter-

action among all cells of the column, heat exchange cannot

affect the temperature of the fictitious cells as that would cor-

rupt the boundary conditions. This is handled by assigning

infinite specific heats to the fictitious cells. This allows evo-

lution of the internal cells and the boundary cells according

to the same mathematical rules/empirical equations. The pre-

ceding mathematical description of the CA algebra is based

on the assumption that the state variable defining each cell

is discrete in space and time. But soil temperatures are con-

sidered to be continuous in space and time. The continuous

description of the soil temperature can be adapted to the CA

(r=2)(r=1) (r=3) (r=4)

Figure 1. One-dimensional cellular automata grids based on the

von Neumann neighbourhood concept. How many neighbours (grey

cells) interact with an active cell (black) is controlled by the indicial

radius (r).

scheme by considering small time intervals over which the

temperature variations are not of interest and hence for all

practical purposes can be assumed constant. Conditions for

convergence of the numerical temperature profile set an up-

per limit on the size of this time interval for a given value of

1x. Therefore, once the length scale of homogeneity 1x in

the system and the local update rules have been ascertained,

the CA is ready for simulation under the given initial and

boundary conditions. Equations (2) and (3) (Sect. 3), applied

sequentially, would be the local update rules for this simple

case of heat flow in a soil column (without phase change)

driven by time varying temperatures at the top.

The meaning of the terms used in the mathematical de-

scription of CA can now be explained with respect to the

heat flow simulation for the hypothetical soil column: Sti is

the temperature of the ith cell at time t , r = 1, φ is a sequen-

tial application of Eqs. (2) and (3) describing heat loss/gain

by a cell due to temperature gradients with its two nearest

neighbours and temperature change due to the heat loss/gain

respectively, and χ is the identity mapping.

3 Coupled heat and water transport in variably

saturated soils

The algorithm developed for this study simultaneously solves

the heat and water mass conservation in the same time step.

The implementation is based on the assumption of nearest

neighbour interactions, i.e. r = 1. The one-dimensional con-

ductive heat transport in variably saturated soils can be given

by the heat balance equation
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qh =

i+1∑
ζ=i−1

λi,ζ ·
Tζ − Ti

li,ζ
, ζ 6= i, (2)

where subscripts i and ζ refer to the cell and its active neigh-

bours, qh is the net heat flux (J s−1 m−2) for the ith cell,

T is cell temperature (◦C), λi,ζ is average effective thermal

conductivity of the region between the ith and the ζ th cells

(J s−1 m−1 ◦C−1), and li,ζ is the distance between the centres

of the ith and the ζ th cells (m). Effective thermal conductiv-

ity can be calculated using one of the popular mixing mod-

els (e.g. Johansen, 1975; Campbell, 1985). The empirical re-

lationship between heat flux from Eq. (2) and the resulting

change in cell temperature (1Ti = T
t+1t
i − T ti ) is given as

Qh,i =
qh ·1t

li
= Ci ·1Ti, (3)

where li is the length of the cell (m) and Ci (J m−3 ◦C−1) is

the effective volumetric heat capacity of the cell such that

Ci = Cwθw+Ciceθice+Csθs+Caθa, (4)

where θ is volumetric fraction (m3 m−3) and subscripts w,

ice, s, and a represent water, ice, soil solids and air fractions.

The mass conservation equation in 1-D can be written as

ρw ·
12

1t
+ ρw ·

qw

li
+ ρw · Ss = 0, (5)

2= θw+
ρice

ρw

θice, (6)

where ρ is density (kg m−3), 2 is the total volumetric wa-

ter content (m3 m−3), qw is the Buckingham–Darcy flux

(m s−1), and Ss is sink/source term. In unfrozen soils, θice =

0 and 2= θw.

Buckingham–Darcy’s equation is used to describe the flow

of water under hydraulic head gradients wherein it is recog-

nized that the soil matric potential (ψ) and hydraulic con-

ductivity (k) are functions of liquid water content (θw). The

dependency of ψ and k on θw can be expressed as a con-

stitutive relationship. The constitutive relationships proposed

by Mualem–van Genuchten (van Genuchten, 1980) defining

ψ(θw) and k(θw) are used in this study:

ψ(θw)=

[
(Se)
−

1
m − 1

] 1
n

α
, (7)

k(θw)=Ks · (Se)
0.5
·

[
1−

(
1− (Se)

1
m

)m]2

, (8)

Se =
θw− θres

η− θres

, (9)

where θres (m3 m−3) is the residual liquid water content, η

(m3 m−3) is total porosity, Ks (m s−1) is the saturated hy-

draulic conductivity, and α (m−1), n andm are equation con-

stants such thatm= 1−1/n. For an elementary cell in a 1-D

CA model, the Buckingham–Darcy flux in its simplest form

can be written as

qw =

i+1∑
ζ=i−1

ki,ζ ·
(ψ + z)ζ − (ψ + z)i

li,ζ
, ζ 6= i, (10)

where all subscripts have the same meaning as introduced

so far, z is the cell elevation and k represents the average hy-

draulic conductivity of the region between the ith and the ζ th

cells. In this study, phase change and associated temperature

change is brought about by integrating along a soil freezing

curve (SFC). SFCs can be defined because the liquid water

content in frozen soils must have a fixed value for each tem-

perature at which the liquid and ice phases are in equilibrium,

regardless of the amount of ice present (Low et al., 1968).

Soil freezing curves for different types of soils developed

from field and laboratory observations between liquid wa-

ter content and soil temperature have been widely reported

(e.g. Anderson and Morgenstern, 1973; Stähli and Stadler,

1997). Van Genuchten’s model can be used to define a SFC

(Eq. 7), wherein ψ(θw) is replaced with T (θw), and n,m and

α (◦C−1) are equation constants.

4 The coupled CA model

Figure 2 shows a flow chart describing the algorithm driving

the coupled CA code. The code was written in MATLAB®.

Let the superscript t denote the present time step and sub-

script i be the spatial index across the grid where each node

represents centres of the cell. The thermal conduction and

hydraulic conduction modules represent two different algo-

rithms that calculate the net heat (qh,i) and water (qw,i) fluxes

respectively across the ith cell. In essence, the thermal con-

duction and hydraulic conduction codes run simultaneously

and are not affected by each other in the same time step.

However, the processes are not independent and are coupled

through updating of model parameters and state variables at

the end of each time step. Hydraulic conduction is achieved

by applying Eq. (10) to each elementary cell using the hy-

draulic gradients between it and its immediate neighbours

(r = 1). Similarly, Eq. (2) is used to calculate the heat flux

between each elementary cell and its immediate neighbours

using the corresponding thermal gradients. The change in

mass due to the flux qw,i is used to obtain change in pressure

head (1ψi = ψ
t+1t
i −ψ ti ) from the ψ(θw) relationship. The

updated value of total water content is then used to update

the volumetric heat capacity Ci (Eq. 4). The updated value

of Ci is used as an input to the energy balance module along

with computed heat flux qh,i . This represents the first stage

of coupling between hydraulic and thermal processes. The

energy balance module computes the total change in ice and

water content due to phase change, and the total temperature

change (1Ti) due to a combination of thermal conduction

and phase change.
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Figure 2. Flow chart describing the algorithm driving the coupled

CA code. Subscripts TC, HC and FT refer to changes in physi-

cal quantities due to thermal conduction, hydraulic conduction and

freeze–thaw processes respectively. Hydraulic conduction and ther-

mal conduction are two different CA codes coupled through up-

dating of volumetric heat capacity and the freeze–thaw module to

simulate the simultaneous heat and water movement in soils. Cor-

responding equations or sections containing module description are

shown in red text in squared brackets.

The energy balance module is explained using an exam-

ple of a system wherein the soil temperature is dropping and

phase change may take place if cell temperature drops be-

low the freezing point of pure water (Tfw = 0 ◦C). Inside the

energy balance module, the change in temperature (1Ti) is

calculated using Eq. (3) and values of Ci and Qh,i assuming

that only thermal conduction takes place. If the computed

1Ti for a given cell is such that T t+1ti ≥ Tfw, then water

cannot freeze; cell temperatures are updated without phase

change and the code moves into the next time step. In the

approach of this study, phase change and associated temper-

ature change can occur if and only if the present cell tem-

perature (Ti) and water content (θw,i) represent a point on

the SFC. This point along the SFC (Fig. 3) is defined here as

the critical state point (Tcrit, θwcrit). If 1Ti gives T t+1ti < Tfw

for any cell, then freezing point depression along the SFC

accounts for change in temperature due to freeze–thaw. The

freezing point depression or Tcrit is defined for the cell by

comparing the cell θw,i with the SFC. However, the coupled

nature of heat and water transport in soils perturbs the crit-

ical state from time to time, e.g. when freezing induces wa-

ter movement towards the freezing front or infiltration into

frozen soil leads to accumulation or removal of extra wa-

ter from any cell. In such a case, Qh,i needs to be used to

bring the cell to the critical state. This may require thermal

conduction without phase change (Tcrit > Ti) or freezing of

water without temperature change (Tcrit < Ti). This process

gives us an additional change in temperature or water con-

- 5 - 4 - 3 - 2 - 1 0 1 2 30 . 0
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0 . 2
0 . 3
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0 . 5
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0 . 8
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c r i t i c a l  s t a t e  p o i n t  f o r  a  g i v e n  �w , i

Figure 3. Graphical description of the phase change approach used

in this study. The curve is a soil freezing curve for a hypothetical

soil. The change in water content (dθw) due to Qres,i is used to

determine Tnew by integrating along the SFC (Eq. 11).

tent which is purely due to the fact that the additional water

accumulation disturbs the critical state. This is another and

a subtle form of coupling between heat and water flow. Be-

cause of the above consideration to perturbation of critical

state caused by additional water added/removed from a cell,

infiltration into frozen soils during the over-winter or spring

melt events need no further modifications to the process of

water and heat balance.

If Qh,i is such that a cell can reach critical state and still

additional heat needs to be removed, then this additional heat

(Qres,i) removal leads to the freezing of water. The freezing

of water leads to change in the temperature of the cell such

that

min

(
θw,i,

Qres,i

Lf

)
=

Tnew,i∫
Tcrit

dθw,i, (11)

where Lf is the latent heat of fusion (334 000 J kg−1) and

Tnew,i is the new temperature of the cell (Fig. 3). If the change

in water content due to freezing is such that θw,i = θres, then

no further freezing of water can take place and Qres,i is used

to decrease the temperature of the cell using Eq. (3) and the

updated value of Ci (i.e. after accounting for change in Ci
due to phase change). The soil thawing case is exactly simi-

lar as described above; the only dissimilarity is that a differ-

ent SFC may be used if hysteric effects are observed in SFC

paths as observed in studies by Quinton and Hayashi (2008),

and Smerdon and Mendoza (2010). If the cell temperature is

above freezing, then the matric potential is calculated using

Eq. (7). For cell temperatures below freezing point, the water

pressure (matric potential) can be determined by the general-

www.soil-journal.net/1/103/2015/ SOIL, 1, 103–116, 2015
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ized Clausis–Clapeyron equation by assuming zero ice gauge

pressure:

Lf ·
1Ti

Ti + 273.15
= g ·19i, (12)

where g is acceleration due to gravity (9.81 m s−2). At the

end of the energy balance calculations, temperatures of all

the cells are updated using the 1Ti computed in the energy

balance module. Water content for each cell is updated by

considering the change due to freeze/thaw inside the energy

balance module and qw,i . Hydraulic conductivity of each cell

is updated (Eq. 8) using the final updated values of water

content. Pressure and total heads in each cell are updated

considering water movement (Eq. 7) and freezing/thawing

(Eq. 12). The volumetric heat capacity of each cell is up-

dated one more time (Eq. 4) to incorporate the changes due

to freeze/thaw inside the energy balance module. Thermal

conductivity of each cell is updated using a mixing model

(e.g. Johansen, 1975). This completes all the necessary up-

dates and the model is ready for computations of the next

time step.

The CA scheme described here is not unconditionally con-

vergent. Hence, the size of the time step cannot be arbitrarily

chosen. In our implementation of the CA model, adaptive

time stepping has been achieved following the convergence

analysis reported in Appendix A.

5 Comparison with analytical solutions

5.1 Heat transfer by pure conduction

The ability of the CA model to simulate pure conduction

under hydrostatic conditions was tested by comparison to

the analytical solution of one-dimensional heat conduction

in a finite domain given by Churchill (1972). A soil column

with total length (Lc) of 4 m was assumed to have differ-

ent initial temperatures in its upper (Tu = 10 ◦C) and lower

(Tl = 20 ◦C) halves (Fig. 4). The system is hydrostatic at all

times and there is no flow. At the interface, heat conduction

due to the temperature gradient will occur until the entire do-

main reaches an average steady state temperature of 15 ◦C.

The analytical solution given by Churchill (1972) can be ex-

pressed as

T (z, t)= Tu ·

[
0.5+

2

π

∞∑
n=1

(−1)n−1

2n− 1
(13)

·cos

(
(2n− 1) ·π · z

Lc

)
·exp

(
−

[
(2n− 1) ·π

Lc

]2

·

(
λ

C

)
· t

)]

+ Tl ·

[
0.5−

2

π

∞∑
n=1

(−1)n−1

2n− 1
· cos

(
(2n− 1) ·π · z

Lc

)

·exp

(
−

[
(2n− 1) ·π

Lc

]2

·

(
λ

C

)
· t

)]
.

The parameters used in analytical examples for

Churchill (1972), and the CA code are given in Ta-

ble 1. There is excellent agreement between the analytical

solution and the CA simulation (Fig. 4).

5.2 Heat transfer by conduction and convection

Stallman’s analytical solution (1965) to the subsurface tem-

perature profile in a semi-infinite porous medium in response

to a sinusoidal surface temperature provides a test of the

CA model’s ability to simulate one-dimensional heat convec-

tion and conduction in response to a time varying Dirichlet

boundary.

Given the temperature variation at the ground surface de-

scribed by

T (z0, t)= Tsurf+A · sin

(
2 ·π · t

τ

)
, (14)

the temperature variation with depth is given by

T (z, t)= Ae−a·z · sin

(
2 ·π · t

τ
− b · z

)
+ T∞, (15)

a =


[(

πCρ

λτ

)2

+
1

4

(
qfCwρw

2λ

)4
]0.5

(16)

+
1

2

(
qfCwρw

2λ

)2
}0.5

−

(
qfCwρw

2λ

)
,

b =


[(

πCρ

λτ

)2

+
1

4

(
qfCwρw

2λ

)4
]0.5

(17)

+
1

2

(
qfCwρw

2λ

)2
}0.5

,

where A is the amplitude of temperature variation (◦C), Tsurf

is the average surface temperature over a period of τ (s), T∞
is the initial temperature of the soil column and temperature

at infinite depth, and qf is the specific flux through the col-

umn top.

The parameters used in analytical examples for Stall-

man (1965), and the CA code are given in Table 2. The cou-

pled CA code is able to simulate the temperature evolution

due to conductive and convective heat transfer as seen from

the excellent agreement with the analytical solution (Fig. 5).

5.3 Heat transfer with phase change

Lunardini (1985) presented an exact analytical solution for

propagation of subfreezing temperatures in a semi-infinite,
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Table 1. Simulation parameters for heat conduction problems. Analytical solution for this example is given by Eq. (13) as per

Churchill (1972).

Symbol Parameter Value

η porosity 0.35

λ bulk thermal conductivity 2.0 J s−1 m−1 ◦C−1

Cw volumetric heat capacity of water 4 174 000 J m−3 ◦C−1

Cs volumetric heat capacity of soil solids 2 104 000 J m−3 ◦C−1

ρw density of water 1000 kg m−3

ρs density of soil solids 2630 kg m−3

l length of cell 0.01 m

t length of time step in CA solution 1 s
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3 . 5

3 . 0

2 . 5

2 . 0

1 . 5

1 . 0
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0 . 0
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T e m p e r a t u r e  ( ° C )

De
pth

 (m
)

1 0  °C

2 0  °C

Figure 4. Comparison between the analytical solution given by

Churchill (1972) and coupled cellular automata model simulation

for a perfectly thermally insulated 4 m long soil column. Lines rep-

resent the analytical solution and symbols represent the CA solution

for time points as shown in the legend. The initial temperature dis-

tribution is shown on the right.

initially unfrozen soil column with time t . The soil column is

divided into three zones (Fig. 6a) where zone 1 is fully frozen

with no unfrozen water; zone 2 is “mushy” with both ice and

water; and zone 3 is fully thawed. The Lunardini (1985) so-

lution as described by McKenzie et al. (2007) is given by

following set of equations:

T1 = (Tm− Ts) ·

erf
(

x

(2
√
D1t)

)
erf(ϑ)

+ Ts, (18)

T2 = (Tf− Tm) ·
erf
(

x

2
√
D4t

)
− erf(γ )

erf(γ )− erf
(
ϑ

√
D1

D4

) + Tf , (19)

1 . 5
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Figure 5. Comparison between the analytical (Stallman, 1965) and

coupled CA model steady state solutions for conductive and convec-

tive heat transfer. The soil column in this example is infinitely long,

initially at 20 ◦C, and the upper surface is subjected to a sinusoidal

temperature with amplitude of 5 ◦C and period of 24 h.

T3 = (T0− Tf) ·
−erfc

(
x

(2
√
D3t)

)
erf
(
γ

√
D4

D3

) + T0, (20)

where T1, T2 and T3 are the temperatures at distance x from

the temperature boundary for zones 1, 2, and 3 respectively;

T0, Tm, Tf, and Ts are the temperatures of the initial con-

ditions, the solidus, the liquidus, and the boundary respec-

tively;D1 andD3 are the thermal diffusivities for zones 1 and

3, defined as λ1/C1 and λ3/C3 where C1 and C3, and λ1 and

λ4 are the volumetric bulk-heat capacities (J m−3 ◦C−1) and

bulk thermal conductivities (J s−1 m−1 ◦C−1) respectively of

the two zones. The thermal diffusivity of zone 2 is assumed

to be constant across the transition region, and the thermal
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Table 2. Simulation parameters for predicting the subsurface temperature profile in a semi-infinite porous medium in response to a sinusoidal

surface temperature. The analytical solution to this one-dimensional heat convection and conduction problem in response to a time varying

Dirichlet boundary is given by Eqs. (14)–(17) as per Stallman (1965).

Symbol Parameter Value

η porosity 0.40

λ bulk thermal conductivity 2.0 J s−1 m−1 ◦C−1

Cw volumetric heat capacity of water 4 174 000 J m−3 ◦C−1

Cs volumetric heat capacity of soil solids 2 104 000 J m−3 ◦C−1

ρw density of water 1000 kg m−3

ρs density of soil solids 2630 kg m−3

l length of cell 0.01 m

t length of time step in CA solution 1 s

qf specific flux 4× 10−7 m s−1 downward

τ period of oscillation of temperature at the ground surface 24 h

A amplitude of the temperature variation at the ground surface 5 ◦C

Tsurf average ambient temperature at the ground surface 20 ◦C

T∞ ambient temperature at depth 20 ◦C

diffusivity with latent heat, D4, is defined as

D4 =
λ2

C2+

(
γdLf1ξ
Tf−Tm

) , (21)

where γd is the dry unit density of soil solids, and1ξ = ξ1−

ξ3 where ξ1 and ξ3 are the ratio of unfrozen water to soil

solids in zones 1 and 3 respectively. For a time t in the region

from 0≤ x ≤X1(t) the temperature is T1 and X1(t) is given

by

X1(t)= 2ϑ
√
D1t; (22)

and fromX1(t)≤ x ≤X(t) the temperature is T2 whereX(t)

is given by

X(t)= 2γ
√
D4t; (23)

and for x ≥X(t) the temperature is T3. The unknowns, ϑ

and γ , are obtained from the solution of the following two

simultaneous equations:

(Tm− Ts)

(Tm− Tf)
· e
−ϑ2

(
1−

D1
D4

)
=

λ2

λ1
erf(ϑ)

√
D1

D4

erf(γ )− erf
(
ϑ

√
D1

D4

) , (24)

(Tm− Tf)
λ2

λ1

(T0− Tf)
·

√
D3

D4

· e
−γ 2

(
1−

D4
D3

)
(25)

=

erf(γ )− erf
(
ϑ

√
D1

D4

)
erfc

(
γ

√
D4

D3

) .

The verification example based on Lunardini’s (1985) ana-

lytical solution used in this study is the same as that used

 31 

 1 

Figure 6 (a) Diagram showing the setting of Lunardini (1985) three zone problem. Equations 2 

18, 19, and 20 are used to predict temperatures in completely frozen zone (no phase change 3 

and sensible heat only), mushy zone (phase change and latent heat + sensible heat), and 4 

unfrozen zone (sensible heat only) respectively. (b) Linear freezing function used to predict 5 

unfrozen water contents for two cases used in this study (Tm = -1°C and Tm = -4°C). 6 

7 

Figure 6. (a) Diagram showing the setting of Lunardini’s (1985)

three-zone problem. Equations (18), (19), and (20) are used to pre-

dict temperatures in the completely frozen zone (no phase change

and sensible heat only), mushy zone (phase change and latent

heat+ sensible heat), and unfrozen zone (sensible heat only) re-

spectively. (b) Linear freezing function used to predict unfrozen

water contents for two cases used in this study (Tm =−1 ◦C and

Tm =−4 ◦C).

by McKenzie et al. (2007). Lunardini (1985) assumed the

bulk-volumetric heat capacities of the three zones, and ther-

mal conductivities in each zone, to be constant. It was also

assumed for the sake of the analytical solution that the un-

frozen water varies linearly with temperature. As stated by

Lunardini (1985), if unfrozen water varies linearly with tem-

perature then an exact solution may be found for a three-zone

problem. Although this will be a poor representation of a real

soil system, it will constitute a valuable check for approxi-
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Table 3. Simulation parameters for predicting the subsurface temperature profile with phase change in a three-zone semi-infinite porous

medium. The analytical solution to this one-dimensional problem with sensible and latent heat zones is given by Eqs. (18)–(25) as per

Lundardini (1985).

Symbol Parameter Value

η porosity 0.20

λ1 bulk thermal conductivity of frozen zone 3.464352 J s−1 m−1 ◦C−1

λ2 bulk thermal conductivity of mushy zone 2.941352 J s−1 m−1 ◦C−1

λ3 bulk thermal conductivity of unfrozen zone 2.418352 J s−1 m−1 ◦C−1

C1 bulk-volumetric heat capacity of frozen zone 690 360 J m−3 ◦C−1

C2 bulk-volumetric heat capacity of mushy zone 690 360 J m−3 ◦C−1

C3 bulk-volumetric heat capacity of unfrozen zone 690 360 J m−3 ◦C−1

ξ1 fraction of liquid water to soil solids in frozen zone 0.0782

ξ3 fraction of liquid water to soil solids in unfrozen zone 0.2

l length of cell 0.01 m

t length of time step in CA solution 1 s

Lf latent heat of fusion 334 720 J kg−1

γd dry unit density of soil solids 1680 kg m−3

Ts surface temperature at the cold end −6 ◦C

Tm temperature at the boundary of frozen and mushy zones −1, −4 ◦C

γ ∗ equation parameter estimated using Eqs. (24) and (25) 1.395, 2.062

ϑ∗ equation parameter estimated using Eqs. (24) and (25) 0.0617, 0.1375

T0 initial temperature of the soil column 4 ◦C

∗ values taken from McKenzie et al. (2007)

mate solution methods. The linear freezing function used in

this study is shown in Fig. 6b and the parameters used in Lu-

nardini’s analytical solution are given in Table 3. The excel-

lent agreement between the analytical solution and coupled

CA model simulations (Fig. 7a, b) for two different cases of

Tm shows that the model is able to perfectly simulate the pro-

cess of heat conduction with phase change.

6 Comparison with experimental data

Hansson et al. (2004) describe laboratory experiments of Mi-

zoguchi (1990) in which freezing-induced water redistribu-

tion in 20 cm long Kanagawa sandy loam columns was ob-

served. The coupled CA code was used to model the experi-

ment as a validation test for simulation of frost-induced wa-

ter redistribution in unsaturated soils. Four identical cylin-

ders, 8 cm in diameter and 20 cm long, were packed to a

bulk density of 1300 kg m−3 resulting into a total porosity of

0.535 m3 m−3. The columns were thermally insulated from

all sides except the tops and brought to uniform temperature

(6.7 ◦C) and volumetric water content (0.33 m3 m−3). The

tops of three cylinders were exposed to a circulating fluid at

−6 ◦C. One cylinder at a time was removed from the freezing

apparatus and sliced into 1 cm thick slices after 12, 24, and

50 h. Each slice was oven dried to obtain the total water con-

tent (liquid water+ ice). The fourth cylinder was used to pre-

cisely determine the initial condition. The freezing-induced

water redistribution observed in these experiments was sim-

ulated using the coupled CA code. Parameters used were sat-
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- 2
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D i s t a n c e  ( c m )
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Figure 7. Comparison between analytical solution of heat flow

with phase change (Lunardini, 1985) and coupled CA model so-

lutions for heat transfer with phase change. Lunardini’s (1985) so-

lution is shown and compared with the CA simulation for two cases:

(a) Tm =−1 ◦C and (b) Tm =−4 ◦C (Table 3, Fig. 6).

urated hydraulic conductivity of 3.2× 10−6 m s−1 and van

Genuchten parameters α = 1.11 m−1 and n= 1.48. The hy-

draulic conductivity of the cells with ice was reduced using

an impedance factor of 2. The thermal conductivity formu-

lation of Campbell (1985) as modified and applied by Hans-

son et al. (2004) was used. In their simulations of the Mi-

zoguchi (1990) experiments, Hansson et al. (2004) calibrated
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Figure 8. Comparison of total water content (ice+ liquid) between

experimental (Mizoguchi, 1990, as cited by Hansson, 2004) and

coupled CA model results: (a) 12, (b) 24, and (c) 50 h.

the model using a heat flux boundary at the top and bottom

of the columns. The heat flux at the surface and bottom was

controlled by heat conductance terms multiplied by the dif-

ference between the surface and ambient, and bottom and

ambient temperatures respectively. Similar boundary condi-

tions were used in the CA simulations. The value of heat con-

ductance at the surface was allowed to decrease non-linearly

as a function of the surface temperature squared using the

values reported by Hansson et al. (2004). The heat conduc-

tance coefficient of 1.5 J s−1m−2 ◦C−1 was used to simulate

heat loss through the bottom. Hansson and Lundin (2006)

observed that the four soil cores used in the experiment per-

formed by Mizoguchi (1990) were quite similar in terms

of saturated hydraulic conductivity, but probably less so in

terms of the water-holding properties where more significant

differences were to be expected. Such differences in water-

holding capacity would result in significant differences in

unsaturated hydraulic conductivities of the columns at dif-

ferent times during the freezing experiments. The simulated

values of total water content agree very well with the ex-

perimental values (Fig. 8). The region with a sharp drop in

the water content indicates the position of the freezing front.

There is clear freezing-induced water redistribution, which

is one of the principal phenomena for freezing porous me-

dia and is well represented in the coupled CA simulations.

Mizoguchi’s experiments have been used by a number of re-

searchers for validation of numerical codes (e.g. Hansson et

al., 2004; Painter, 2011; Daanen et al., 2007). The CA sim-

ulation shows a comparable or improved simulation for total

water content as well as for the sharp transition at the freez-

ing front.

7 Conclusions

The study provides an example of application of direct solv-

ing to simulate highly non-linear processes in variably sat-

urated soils. The modelling used a one-dimensional cellu-

lar automata (CA) structure wherein two cellular automata

models simulate water and heat flow separately and are cou-

pled through an energy balance module. First-order empirical

laws in conjunction with energy and mass conservation prin-

ciples are shown to be successful in describing the tightly

coupled nature of the heat and water transfer. In addition, use

of an observed soil freezing curve (SFC) is shown to obliviate

the use of non-physical terms such as apparent heat capacity

and provide insights into a further subtle mode of coupling.

This approach of coupling and use of SFC is easy to under-

stand and follow from a physical point of view and straight

forward to implement in a code. The results were success-

fully verified against analytical solutions of heat flow due to

pure conduction, conduction with convection, and conduc-

tion with phase change. In addition, freezing-induced water

redistribution was successfully verified against experimental

data.
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Appendix A: Convergence analysis

The CA scheme described in this paper is not uncondition-

ally convergent. Hence, the size of the time step cannot be

arbitrarily chosen. In this section we present a detailed eval-

uation of the convergence criteria of our code to address the

choice of the time step.

The heat and flow convergence criteria are derived one af-

ter another. We start with the heat balance portion. The local

energy balance is the basic principle used in our approach.

This is imposed by ensuring flux continuity of heat. The local

heat balance is described by Eqs. (1) and (2) and the freeze–

thaw effect. For a 1-D CA application, assuming r = 1, this

can be written as

Ci li
T̃ t+1ti − T̃ ti

1t
+ ρwLfli

θ̃ t+1twi − θ̃ twi

1t
(A1)

= λi,i+1

T̃ ti+1− T̃
t
i

li
+ λi,i−1

T̃ ti−1− T̃
t
i

li
,

where li is the uniform cell size and λi,i+1 and λi,i−1 are

the average effective thermal conductivity of the region be-

tween the ith, and the i+ 1th and i− 1th cells respectively.

The second term on the left-hand side of equation is the con-

tribution of freeze–thaw to the thermal energy conservation.

T̃ ti = T
t
i +e

t
i is some approximation of the exact solution for

temperature T ti at time t and cell index i given an approxima-

tion error eti . Similarly, θ̃ twi = θ
t
wi + e

′t
i is an approximation,

subject to the discretization error e′ti , of the exact solution for

the volumetric fraction of water θ twi . It is useful to rewrite the

equation in the following simpler form in order to decouple

the thermal and hydraulic processes in terms of known pa-

rameters:

Ci li
T̃ t+1ti − T̃ ti

1t
+

(
ρwLf

θ̃ t+1twi − θ̃ twi

T̃ t+1ti − T̃ ti

)
(A2)

· li
T̃ t+1ti − T̃ ti

1t
= λi,i+1

T̃ ti+1− T̃
t
i

li
+ λi,i−1

T̃ ti−1− T̃
t
i

li
.

The quantity in parentheses in the second term of the

equation can be approximated as ρwLfdθw/dT |T=T ti
, where

dθw/dT |T=T ti
is the slope of the soil freezing curve at

T = T ti , a known quantity. Finally, we introduce the term

C′i = Ci +ρwLfdθw/dT |T=T ti
as apparent heat capacity, and

rewrite Eq. (A1) as

C′i li
T̃ t+1ti − T̃ ti

1t
= (A3)

λi,i+1

T̃ ti+1− T̃
t
i

li
+ λi,i−1

T̃ ti−1− T̃
t
i

li
.

Rearranging the terms, we obtain

et+1ti = eti

(
1−

λ̄i1t

l2i C
′

i

)
+
λi,i+11t

l2i C
′

i

eti+1 (A4)

+
λi,i−11t

l2i C
′

i

eti−1+

[
λi,i+11t

l2i C
′

i

T ti+1+
λi,i−11t

l2i C
′

i

T ti−1

+T ti

(
1−

λ̄i1t

l2i C
′

i

)
− T t+1ti

]
,

where λ̄i = λi,i−1+ λi,i+1. Replacing all the error terms

by the maximum absolute error term, defined as Et =

max
{
| eti |

}
, we obtain

1t ≤
l2i C
′

i

λ̄i
. (A5)

All coefficients of error terms on the right-hand side of

Eq. (A4) are either positive or zero. Given this, the up-

per bound on the error at time t +1t , defined as Et+1t =

max
{
| et+1ti |

}
, must be

Et+1t ≤ Et +max {f (T ,λ)} = Et +F, (A6)

where f (T ,λ) is the term in squared brackets in Eq. (A4)

and F =max {f (T ,λ)}. Therefore as long as Eq. (A5) is sat-

isfied, the error always has an upper bound controlled solely

by the discretization error. This is the condition for stability.

But, because C′i is a function of time, an adaptive time step-

ping scheme would be well suited to solve the problem. The

adaptive time stepper would need to satisfy Eq. (A5) at each

time step.

As long as the thermal energy balance component of our

CA algorithm obeys the time stepping–spatial discretization

relationship in Eq. (A5) it remains stable. For such time step

control, using the Lax–Richtmeyer equivalence theorem, one

only needs to show that the thermal module represents a con-

sistent numerical approximation to the full diffusion equation

(including C′i to account for the freeze–thaw effect) in order

to prove convergence of our method. To do this we note the

following recurrence relations:

Et+1t ≤ Et +F ≤ Et−1t + 2F ≤ E0
+ (n+ 1)F, (A7)

t = n1t.

It is worth noting that here we have assumed a constant value

of F through all time steps. In the following we argue that

this does not affect the generality of the convergence analysis

that follows next.

Clearly, if the only source of error in our approximate so-

lution is the discretization of a continuous process, then our

initial values must be error-free; i.e. E0
= 0. Therefore,

Et+1t ≤ (n+ 1)F. (A8)

Now, from the definition of f (T ,λ) we have

f (T ,λ)=

[
1

li

(
λi,i+1

T ti+1− T
t
i

li
+ λi,i−1

T ti−1− T
t
i

li

)
(A9)
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−C′i
T t+1ti − T ti

1t

]
1t

C′i
.

For lim1t , li→ 0, we have the cluster of terms within the

square brackets converge to the expression

∂

∂z

(
λ(z)

∂H

∂z

)
−C′

∂T

∂t
. (A10)

As T is an exact solution of the above diffusion-equation

form, we must have the terms within square bracket converge

to 0 as lim1t , li→ 0. This argument for the boundedness of

F as 1t , li→ 0 holds at each time step and, hence, would

have led to the same conclusion if we would have used a time

variable maximum value of f (T ,λ) in Eq. (A8). Therefore,

in general, at any time t

lim
1t,li→0

Et → 0. (A11)

This formally shows that our numerical algorithm, with time

stepping satisfying Eq. (A5), is consistent and hence follows

the convergence of the thermal module.

We can construct a similar convergence analysis for the

hydraulic module. But we will approach this problem from

the continuum version of the modified Richard’s equation for

variably saturated flow for the sake of brevity. The modified

Richard’s equation for variably saturated flow can be written

as (in the absence of a source term)

∂θw

∂t
+
ρice

ρw

∂θice

∂t
=
∂

∂z

(
k(z)

∂H

∂z

)
. (A12)

The left-hand side of Eq. (A12) follows from the continuum

version of the first term on the left-hand side of Eq. (5) where

Eq. (6) has been used to eliminate 2. The term on the right-

hand side is the Darcy flux, introduced as the continuum ver-

sion of Eq. (10) where the total head H = ψ + z. The effect

of freeze–thaw on the total head can be accounted for as a

Clausis–Clapeyron process as given in Eq. (12). To make this

clear, we rewrite Eq. (A12) as follows:(
∂θw

∂H
+
ρice

ρw

∂θice

∂T

∂T

∂H

)
∂H

∂t
=
∂

∂z

(
k(z)

∂H

∂z

)
. (A13)

We can make use of the following relations to eliminate tem-

perature from Eq. (A13):

∂θice

∂T
=−

Lf

gT

∂θw

∂H
, (A14)

∂T

∂H
=
gT

Lf

. (A15)

Therefore, we can rewrite Eq. (A12) finally as(
1−

ρice

ρw

)
Cw

∂H

∂t
=
∂

∂z

(
k(z)

∂H

∂z

)
, (A16)

where Cw = ∂θw/∂H |H=H(t) is the local slope of the soil

retention curve which can be derived from Eq. (7). Equa-

tion (A16) now has the same form as the expression in

Eq. (A10). It is immediately clear that, if one would have fol-

lowed the full formal arguments as outlined for the thermal

module, the condition for stability of the variably saturated

flow dynamics part of our algorithm is of the form

1t ≤
l2i C
′

wi

k̄i
, (A17)

where C′w = Cw(1−ρice/ρw) and k̄i = ki,i−1+ki,i+1. We re-

fer the reader to Mendicino et al. (2006) for a thorough con-

vergence analysis of the water flow problem. The formal ar-

gument is exactly equivalent to that presented by us for the

heat flow problem. Combining Eqs. (A5) and (A17), the fol-

lowing condition gives stability and convergence conditions

for the overall CA problem:

1t ≤min

(
l2i C
′

wi

k̄i
,
l2i C
′

i

λ̄i

)
. (A18)
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